• Title/Summary/Keyword: kinetic energies

Search Result 220, Processing Time 0.027 seconds

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

A Study on the Interactive Architecture in Nature Environment

  • Baek, Seung-Man
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.41-46
    • /
    • 2018
  • The context of innovation in which we evolve today, subtracts us in a spacial reality and virtuality (digital) that aimed less and less to interact with natural processes which could converge to new possible relationships in the world. We constantly live in presence of fluctuations and imperceptible natural energies (wind, solar radiation, etc.) defined by flows, their own physicality, which remains without being virtual, elusive. This study first outlines how these energies already exploited within the framework of production, could be thought as interactive of our habitat's space dimension, as a prolongation of a physical and material environment built by men and for men, giving rise to new social, cultural dynamics, and making natural complexity of our space vivid, comprehensible with new visual and physical clues. In recent days, where lifestyles are changing, architecture no longer needs to limit its scope of creation to only built structures. Based on a deeper understanding of human and through new potential advanced technologies (kinetic system, etc), it is time to fundamentally diagnose what environments or devices contribute to our lives. Architecture becomes ${\ll}interface{\gg}$, step up its fundamental role, and newly defines the sturdy image and tectonics of existing environment, establishing a stance to search for a new typology. In the end, building will show two simultaneous and distinctive connections related to its physical existence: reality in its function and irreductibility, in its ability to forge new dynamic connections with its environment, hybridizing the spatial dimension to a new form of physicality, adaptive and incessantly flexible in the dimension time, becoming a vessel for ever changing contemporary lifestyles.

Water-Vapor Transfer Characteristics of Carrageenan-Based Edible Film (카라기난 필름의 투습 특성)

  • Rhim, Jong-Whan;Hwang, Keum-Taek;Park, Hyun-Jin;Jung, Soon-Teck
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.545-551
    • /
    • 1996
  • Water-vapor transmission rate and water-vapor permeability of carrageenan-based edible film with three different thicknesses of 0.05, 0.08 and 0.11 mm were measured to investigate the potential applicability of the films to powder foods at five different temperatures (20, 25, 30. 35 and $4^{\circ}C$) and three different relative humidities (50. 70 and 90% RH). Water-vapor transmission rate of the carrageenan-based film was gound to be 2.3 times higher than that of polyethylene (PE) film and water-vapor permeability of the film was 45-230 times higher than that of PE film. Water-ydpor permeability of the film seemed to increase linearly with the film thicknees like other hydrophilic edible films. Water-vapor transmission rate were found to be dependent on the temperature. Activation energies of the water-vapor transmission rate of the film were found to be between 7.898 and 12.8702 kj/mol depending on the film thickness. The water-vapor transmission rate of the film showed the typical kinetic compensation effect between activation energies and preexponential factors. which was proved by the linear increase in the value of logarithms of preecponential factor.

  • PDF

Numerical experiments for the changes of currents by reclamation of land in Kwangyang Bay (매립으로 인한 광양만의 유동변화 수치실험)

  • 추효상
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.637-650
    • /
    • 2002
  • This study presents an investigation of the changes of the currents in Kwangyang Bay due to the construction of harbor, reclamation and coastal developments. Currents were simulated by the numerical experiments with a diagnostic multi-level model and using the seasonal oceanographic data of temperature, salinity and ocean current. The values of kinetic and potential energies for the currents were calculated in cases of three topographical changes; before coastal developments, the existing state and after completion of the development project in Kwangyang Bay. The changes of currents due to the coastal developments are as follow; Kinetic energies of tide induced residual currents and wind driven currents decreased by 35~40 percent and 5 percent respectively, however those of density currents increased by 10 percent since the decrease of the coastal areas. Kinetic energy of residual currents including tide induced residual currents, density currents and wind driven currents reduced by 10 percent compared with before the coastal developments. Decrease of current velocity was greatest in summer. Therefore, in summer it was assumed that the Kwangyang Bay is more easily polluted by stratification and decrease of residual current than before the coastal developments carried out.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 1. Derivation of Equations of Wave Energy (선형파 이론에 의한 파랑변형 예측 시 소멸파 성분의 중요성 검토: 1. 에너지 식 유도)

  • 이창훈;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.282-285
    • /
    • 2002
  • The magnitude of evanescent modes in terms of dynamics is investigated in case that the transformation of water waves is predicted using the linear wave theory. In other words, derivation is made of both the kinetic and potential wave energies of evanescent modes as welt as propagating modes. The evanescent modes consist of compound components of propagating and evanescent modes, those of identically equal evanescent modes, and those of identically different evanescent modes. The wave energy per a horizontal distance decreases exponentially with the distance.

Experimental and Kinetic Studies of Esterification of Glycerol Using Combustion Synthesized SO42-/CeO2-Al2O3

  • Veluturla, Sravanthi;Narula, Archna;Rao, D. Subba;Indraja., S;Kulkarni, Rajeswari. M.
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.592-599
    • /
    • 2018
  • An increase in the global production of biodiesel has resulted in the newfound significance of its byproduct, glycerol. The synthesis of acetins is an economical avenue to enhance the value of glycerol derived from biodiesel. WE developed an eco-friendly process for the synthesis of fuel additives from glycerol using a mixed oxide $SO{_4}^{2-}/CeO_2-Al_2O_3$ as catalyst. The $CeO_2-Al_2O_3$ mixed oxide was synthesized by the combustion method and then sulfated. The characterization of the catalyst was by means of XRD, BET, FTIR, and SEM. The influence of temperature, mole ratio and catalyst loading on yield and selectivity of the acetins was studied for the esterification of glycerol. The reaction rate constants ($k_1$, $k_2$ and $k_3$) were estimated using optimization method in MAT lab, and the activation energies ($E_1$, $E_2$ and $E_3$) were determined by the Arrhenius equation. Furthermore, a kinetic model was developed.

A Kinetic Studies of Pyrolysis and Combustion of Sewage Sludge (하수 슬러지의 열분해 및 연소 Kinetics 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.47-53
    • /
    • 2014
  • Effective treatment and energy conversion technologies are necessary due to the ban of the dumping of organic waste including the sewage sludge. In this study, the kinetics of pyrolysis and combustion were derived in a TGA and thermobalance reactor, which is essential for thermal conversion of sewage sludge to energy. Three steps are shown for the pyrolysis in TGA and the different pre-exponential factors and activation energies are derived depending on the temperature range. Three models of gassolid reaction were applied to the reaction kinetics analysis for the combustion of sewage sludge char and shrinking core model was an appropriated model. Apparent activation energy and pre-exponential factor were evaluated and the effect of oxygen partial pressure was examined.

PSYCHO-PHYSICS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.35-38
    • /
    • 2000
  • Conventional atom model must be criticized on the following four points.(1) natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc.(2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The hv is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not changed during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body.New atomic model 9the crystallizing $\pi$-bonding) was proposed in the journal of material processing technology since 1997 for the explanation of the mechanical behaviors in terms of physics. $\prod$-ray physics proved that the electrons can come out from in the nucleus and modern chemistry corresponds to the $\pi$-bonding by the nuclear electrons. The $\pi$-bonding structure of the protons outside the nucleus is that electrons move between protons of the different atoms. The perception step and the characteristic frequency in signal transduction is due to the accumulation of the $\pi$-rays outside of the proton before their absorption to the nucleus.

  • PDF

Physico-Chemical Characterization of the Layered Double Hydroxide as Pillar Host Material (Pillar Host Material로써 Layered(Mg/Al) Double Hydroxide의 물리화학적 특성화)

  • 형경우;이용석
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.443-450
    • /
    • 1998
  • Layered double hydroxides(LDHs) [{{{{ {Mg }_{1-x } }}{{{{ {Al }_{x } }}({{{{ {OH}_{2 } }})]ζ+({{{{ {CO }`_{3 } ^{2- } ){ }_{x/2 } }}$.${{{{ { yH}_{2 }O }} wioth variation of layer charge densitywere synthesized by co-precipitation methdo since their charge densities have a very important role to be det-ermined the physicochemical properties of layered materials. The XRD IR and thermal studies of them were discussed and the kinetic study for the decarbonation reaction was also carried out. From the results of XRD analysis we found that the lattice parameter and the unit cell volume were linearly decreased with the amount of Al substituents(x) in the vicinity of x=2∼10${\times}$1/3${\times}$10-1 but they had nearly constant values when the x are far from these vicinit. The activation energies for the decarbonation reaction of x=6.8, 10${\times}$1/3${\times}${{{{ { 10}^{-1 } }} were estimated to be 47.0, 37.6, 39.3 kcal/mol The specific surface areas(90-120 m2/g) of stable hy-drotalcite-type LDHs were dractically decreased with increasing of layer charge density.

  • PDF

Substrate Ground State Binding Energy Concentration Is Realized as Transition State Stabilization in Physiological Enzyme Catalysis

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.533-537
    • /
    • 2004
  • Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.