• 제목/요약/키워드: kinematic variable

검색결과 128건 처리시간 0.024초

볼링의 운동학적 분석과 주요인 구조분석 (An analysis of Factorial structure of Kinematic variables in Bowling)

  • 이경일
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.381-392
    • /
    • 2002
  • 본 연구는 볼링의 운동학적 변인들을 규명하고 변인들간의 관계를 분석하여 볼링의 운동학적 변인들에 대한 주요인 구조를 파악할 뿐 아니라 나아가 본 연구를 통하여 볼링 지도자와 볼러들에게 경기력 향상에 관한 유익한 자료를 제공하고자 한다. 볼링의 운동학적 변인을 분석하고 변인들간의 관계 및 중요 요인을 분석함으로써 볼러들과 지도자들에게 유익한 자료를 제공하기 위해 시도되었으며 프로 1명, 국가대표 2명, 일반 볼러 6명으로 선정하였으며 분석시 방향의 일치성을 위해 모두 오른손잡이로 선정하였다. 스트라이크 포켓 존(1-3번핀 사이)에 볼이 진입된 시기만을 선택하였으며 선택된 시기 가운데 스트라이크가 발생된 3회의 시기와 스트라이크가 발생되지 않는 3회의 시기로 총 54회의 시기 가운데 2회의 시기를 제외하고 52회의 시기를 선택하여 분석하였다. 볼링의 운동학적 변인들의 집단간 차이를 보기위한 t-test결과 x1(오른쪽 어깨 위치), x2(볼중심 위치), x8(볼의 회전수), x9(손끝 위치), x10(손등위치), x11(손끝 속도), x12(손등 속도), x13(손등 각도)는 집단간 유의한 차이가 나타났지만, x3(오른쪽 어깨 속도), x5(오른쪽 손목 각도), x6(오른쪽 어깨 각도), x7(소요시간)은 집단간 유의한 차이가 나타나지 않았다. x8(볼의 회전수)의 경우 우수집단이 $12.25{\pm}0.90$, 비우수집단이 $8.39{\pm}1.88$로 집단간 평균차는 3.86이며 p<.001수준에서 t = 7.48로 유의한 차이가 나타났다. 요인점수는 관측대상이 각 변수에 대해 회답한 결과를 요인별 가중치를 이용하여 요인 공간상의 점수로 변환시켜 연구자가 각 관측대상의 요인 공간상의 위치를 파악할 수 있게 해준다.

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

점소성 구성식의 적분에 미치는 선형화 방법의 영향 (Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선 (Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle)

  • 손정현;박성준
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

A mechanical behavior of composite plates using a simple three variable refined plate theory

  • Bakoura, Ahmed;Djedid, Ibrahim Klouche;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.617-625
    • /
    • 2022
  • A novel three variable refined plate theory (TVRPT) is developed in this article for laminated composite plates for the first time. The theory takes into account the nonlinear variation of transverse shear deformations, and satisfies the boundary conditions of zero traction on the plate surfaces without considering the "shear correction factor". The important characteristic of this new kinematic is that the unknowns numbers is only 3 as is employed in "classical plate theory" (CPT). The numerical results of the current theory are compared with 3D-elasticity solutions and the calculations of "first order theories" and other higher order models found in the literature.

New Formulation Method for Reducing the Direct Kinematic Complexity of the 3-6 Stewart-Gough Platform

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.156-163
    • /
    • 2002
  • This paper presents a new formulation to simplify the three resulting constraint equations of the direct kinematics of the 3-6 (Stewart-Gough) Platform. The conventional direct kinematics of the 3-6 Platform has been formulated through complicated steps with trigonometric functions in three angle variables and thus results in the computational burden. In order to reduce the formulation complexity, we replace an angle variable into a length one and express three connecting joints on the moving platform in the same frame. The proposed formulation yields considerable abbreviation of the number of the calculation terms involved in the direct kinematics. It is verified through a series of simulation results.

케이싱 오실레이터의 순기구학 해석 (Forward Kinematic Analysis of Casing Oscillator)

  • 남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.

다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획 (A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique)

  • 이지홍;오영석
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF

라체팅 거동에 대한 점소성 구성방정식 (Viscoplastic Constitutive Equations for Ratchetting Behavior)

  • 호광수
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.466-472
    • /
    • 2005
  • Inelastic deformation behavior of metals and alloys is considered rate dependent. Uniaxial ratcheting experiments performed by Ruggles and Krempl, and Hassan and Kyriakides exhibited that higher mean stress for a fixed stress amplitude resulted in higher ratchet strain within a rate independent framework and higher stress rate resulted in lower ratchet strain, respectively. These phenomena are qualitatively investigated by numerical experiments through unified viscoplasticity theory. The theory does not separate rate-independent plasticity and rate-dependent creep, and thus uses only one inelastic strain to describe inelastic deformation processes with the concept of the yield surface. The growth law for the kinematic stress, which is a tensor valued state variable of the constitutive equations, is modified to predict the linear evolution of long-term ratchet strain.

유성기어 감속기의 기구형태 설계에 관한 연구 (A Study on A Mechanism Type Design of General Planetary Gear Reducers)

  • 신중호;권순만;황정건;곽희성;고우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1728-1732
    • /
    • 2005
  • Gear trains are used in many machinery for variable speed ratios. Typical shapes of gear trains are two categories: simple gear trains and planetary gear trains. Generally the methods of the design typical shapes are two way. One of the methods is trailblazing design and the other is selective design in available types. This paper presents the mechanism types when input rotating velocity and output rotating velocity are maintained for useful planetary gear reducers of twelve types. Also, this paper gives the applicable example about rotating velocity of the gear axis, carrier velocity and the organized gear specifications

  • PDF