• Title/Summary/Keyword: kinematic isotropy

Search Result 16, Processing Time 0.024 seconds

The 6-DOF Parallel Manipulator Having the Specific Trajectory Based on the Kinematic Isotropy (기구학적 등방성을 고려한 특정작업경로를 가진 6-DOF 병렬형 매니퓰레이터)

  • Yang, Hyun-Ik;Xu, Yuan-Ge
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.495-502
    • /
    • 2004
  • In this paper, kinematic structure of parallel manipulator having 6-DOF is determined to follow the specific trajectory represented by several curves expressed by the parametric variable functions. In addition, the parallel manipulator is designed to have a high dexterity by considering a kinematic isotropy which can stabilize the motion of the moving platform in the restricted workspace.

Local and Global Isotropy Analysis of Caster Wheeled Omnidirectional Mobile Robot

  • Kim Sung-bok;Moon Byoung-kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • The omnidirectional mobility of a mobile robot may lose significance in motion control, unless the isotropy characteristics of the mechanism is maintained well. This paper investigates the local and global isotropy of an omnidirectional mobile robot with three caster wheels. All possible actuations with different number and combination of rotating and steering joints are considered. First, the kinematic model based on velocity decomposition and the algebraic conditions for the local isotropy are obtained. Second, the geometric conditions for the local isotropy are derived and all isotropic configurations are fully identified. Third, the global isotropy index is examined to determine the optimal parameters in terms of actuation set, characteristic length, and steering link length.

  • PDF

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2356-2361
    • /
    • 2005
  • In this paper, we present a complete isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) with nonredundant/redundant actuation. The motivation of this work is that the omnidirectional mobility loses significance in motion control unless the isotropy characteristics is maintained well. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which describe the wheel configurations. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived to completely identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations and the characteristic length required for the isotropy are discussed.

  • PDF

Isotropy Analysis of Caster Wheeled Mobile Robot with Variable Steering Link Offset (가변 조향링크 옵셋을 갖는 캐스터 바퀴 이동로봇의 등방성 분석)

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1235-1240
    • /
    • 2006
  • Previous isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) has been made under the assumption that the steering link offset is equal to the caster wheel radius. Nevertheless, many practical COMR's in use take advantage of the steering link offset different from the wheel radius, mainly because of improved stability. This paper presents the isotropy analysis of a fully actuated COMR with variable steering link offset, which can be considered as the generalization of the previous analysis. First, the kinematic model of a COMR under full actuation is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize three different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify all possible isotropic configurations completely.

Systematic Isotropy Analysis of Caster Wheeled Mobile Robot with Steering Link Offset Different from Wheel Radius

  • Kim, Sung-Bok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.214-220
    • /
    • 2006
  • This paper presents the systematic isotropy analysis of a fully actuated caster wheeled omnidirectional mobile robot (COMR) with the steering link offset different from the wheel radius, which can be considered as the generalization of the previous analysis. First with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize there different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify four different sets of all possible isotropic configurations. Fourth, for each set the expressions of the isotropic characteristic length required for the isotropy of a COMR are elaborated.

  • PDF

SenSation : A New Translational 2 DOF Haptic Device with Parallel Mechanism

  • Chung, Young-Hoon;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2001
  • We propose a new two-degree of freedom parallel mechanism for a haptic device and will refer to the mechanism as the SenSation. The SenSation is designed in order to improve the kinematic performanced and to achieve static balance. We use the panto graph mechanisms in order to change the location of active joints, which leads to transform a direct kinematic singularity into a nonsingularity. The direct kinematic singular configurations of the SenSation occur near the workspace boundary. Using the property that position vector of rigid body rotating about a fixed point is normal to the velocity vector, Jacobian matrix is derived. Using the vector method, two different types of singularities of the SenSation can be identified and we discuss the physical significance of each of the three types of singularities. We will compare the kinematic performances(force manipulability ellipsoid, kinematic isotropy) of the SenSation with those of five-var parallel mechanism. By specifying that the potential energy be fixed, the conditions for the static balancing of the SenSation is derived. The static balancing is accomplished by changing the center of mass of the links.

  • PDF

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim Sung-Bok;Moon Byung-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • In this paper, we present the complete isotropy analysis of a caster wheeled omnidirectional mobile robot (COMR) with nonredundant/redundant actuation. It is desirable for robust motion control to keep a COMR close to the isotropy but away from the singularity as much as possible. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which specify the wheel configuration. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived so as to identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations, the isotropic characteristic length, and the optimal initial configuration are discussed.

Isotropic Configurations of Omnidirectional Mobile Robots with Three Caster Wheels

  • Kim, Sung-Bok;Lee, Jae-Young;Kim, Hyung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2066-2071
    • /
    • 2003
  • In this paper, we identify the isotropic configurations of an omnidirectional mobile robot with three caster wheels, depending on the selection of actuated joints. First, We obtain the kinematic model of a caster wheeled omnidirectional mobile robot(COMR) without matrix inversion. For a given task velocity, the instantaneous motion of each wheel is decomposed into two orthogonal instantaneous motions of the steering and the rotating joints. Second, with the characteristic length introduced, we derive the isotropy conditions of a COMR having $n({\ge}3)$ actuated joints, which are imposed on two Jacobian matrices, $A{\in}R^{n{\times}3}$ and $B{\in}R^{6{\times}6}$. Under the condition of $B{\propto}I_6$, three caster wheels should have identical structure with the length of the steering link equal to the radius of the wheel. Third, depending on the selection of actuated joints, we derive the conditions for $A^t$ $A{\propto}I_3$ and identify the isotropic configurations of a COMR. All possible actuation sets with different number of actuated joints and different combination of rotating and steering joins are considered.

  • PDF

Task Based Design of a Two-DOF Manipulator with Five-Bar Link Mechanism (5절 링크구조를 갖는 2자유도 매니퓰레이터의 작업지향설계)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • As the demand for the design of modular manipulators or special purpose manipulators has increased, task based design to design an optimal manipulator for a given task become more and more important. However, the complexity with a large number of design parameters, and highly nonlinear and implicit functions are characteristics of a general manipulator design. To achieve the goal of task based design, it is necessary to develop a methodology to solve the complexity. This paper addresses how to determine the kinematic parameters of a two-degrees of freedom manipulator with parallelogram five-bar link mechanism from a given task, namely, how to map a given task into the kinematic parameters. With simplified example of designing a manipulator with five-bar link mechanism, the methodology for task based design is presented. And it introduces formulations of a given task and manipulator specifications, and presents a new dexterity measure for manipulator design. Also the optimization problem with constraints is solved by using a genetic algorithm that provides robust search in complex spaces.

  • PDF

Kinematic Manipulability Analysis of the Casing Oscillator (케이싱 오실레이터의 기구학적 조작성 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.