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Local and Global Isotropy Analysis of Caster Wheeled
Omnidirectional Mobile Robot

Sung-bok Kim, Byoung-kwon Moon”

Abstract

The omnidirectional mobility of a mobile robot may lose significance in motion control, unless the isotropy

characteristics of the mechanism is maintained well. This paper investigates the local and global isotropy of an

omnidirectional mobile robot with three caster wheels. All possible actuations with different number and

combination of rotating and steering joints are considered. First, the kinematic model based on velocity

decomposition and the algebraic conditions for the local isotropy are obtained. Second, the geometric conditions

for the local isotropy are derived and all isotropic configurations are fully identified. Third, the global isotropy

index is examined to determine the optimal parameters in terms of actuation set, characteristic length, and

steering link length.

Keywords : Omnidirectional mobility, Caster wheel, Isotropy analysis, Optimal design and control

I. Introduction

The omnidirectional mobility of a mobile robot is
required to navigate in daily life environment which is
restricted in space and cluttered with obstacles. Several
omnidirectional wheel mechanisms have been proposed,
including universal wheels, Swedish wheels, orthogonal

wheels, ball wheels, and so on. Recently, caster
wheels were employed to develop an omnidirectional
mobile robot at Stanford University [1], which was
commercialized by Nomadic Technologies. Since caster
wheels do without small peripheral rollers or support
structure, a caster wheeled omnidirectional mobile robot
(COMR) can maintain good performance as payload or
ground condition changes.

For a general form of wheeled mobile robots, a
systematic procedure for Kkinematic modeling was
described [2]. There have been previous work on a
COMR. It was shown that at least four joints of two
caster wheels should be actuated to avoid the
singularity [3]. For some actuation sets, the global
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isotropy index was examined to optimize the design
parameters [4]. For all possible actuation sets, the local
isotropy was analyzed to identify the isotropic
configurations. On the other hand, an isotropic
omindirectional mobile robot with Swedish wheels was
designed [6].

The purpose of this paper is to investigate the
local and global isotropy of a COMR for the optimal
design and control. This paper is organized as follows.
In Section II, with the characteristic length introduced
[6], the kinematic model and the isotropy conditions are
obtained. For all possible actuation sets, Section III
derives the geometric conditions for the local isotropy
to identify all isotropic configurations. And, Section IV
examines the global isotropy index to optimize the
design and control parameters. Finally, the conclusion is
made in Section V. ‘

II. Kinematic Modeling and Isotropy
Conditions

A. Kinematic Modeling

Consider a COMR with three caster wheels
attached to a regular triangular platform moving on the
xy plane, as shown-in Fig. 1.
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Fig. 91 A caster wheeled omnidirectional mobile
robot.

Let / be the side length of the platform with the
center 0, and three vertices, 0, i=1,2,3. For the
i ™ caster wheel with the center P, i=1,2,3, we
define the following. Let d; and 7; be the length of the
steering link and the radius of the wheel, respectively.
Let ©, and ¢, be the angles of the rotating and the
steering joints, respectively. Let u; and v; be two
orthogonal unit vectors along the steering link and the
wheel axis, respectively, such that

s teordll RS I
)
Note that
u; u,»l + v, v,«t = ], 2
Su; =0 © X v; =10
(3)

where I is the identity matrix and 0 is the zero
vector. Let s; be the vector from O, to 0, such that
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Note that ZJI s; = 0. Let p; be the vector from O,

be the rotation of p; by 90°
counterclockwise. Note that

to P, and q;

D, = s; — d;u; )]
4, =0 © X p; =0 6)
N .

3

let v and o be the linear and the angular
velocities at O, of the platform, respectively. For the
i ™ caster wheel, i=1,2,3, the linear velocity at the
point of contact with the ground can be expressed by

v+ oa, = 6 u + dé;v, ®

Premultiplied by u, and v/, (8) becomes

u/ q; 0 = », O 9
d; b, (10)

u,—' v +
vitv + v,-’q,-a) =

Notice that the instantaneous motion of the wheel is
decomposed into two orthogonal components of the
rotating and the steering joints.

Assume that » (3<#z<6) joints of a COMR are
actuated. With the characteristic length L (00)
introduced [6], the kinematics of a COMR can be
written as
B 0 an

where x = [ v Lo I’ R¥! is the task velocity

A x =

vector, and © R ™ is the joint velocity vector,
and

glt % glt h, ‘

A = : : e R™ (12)
g, + g’ h,
Cl 0 :

B = Do e R™ (13)
0 - ¢,

are the Jacobian matrices. In (12), g, corresponds to
either u; or v, while h, corresponds to q,. In (13),
c, corresponds to either »; or 4. It should be
mentioned that the role of the characteristic length L is
to make all three columns of A consistent in physical
unit.

The expressions of g,  h, can be simplified as
follows. In the case of the rotating joint for which

g, = u;and h, = q,
gkt h, = u/ a; = Vit p;, = Vit s, (14
And, in the case of the steering joint for which
g, = vi;and h, = gq,
gkthkz Vitqi=_uitpi:_uitsi+d
(15)
B. Isotropy Conditions . ‘

Based on (11), the isotropy conditions of a COMR
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can be stated as
A'A «< I, (16)
B <« I amn
From (13) and (17), the isotropy condition on B is
obtained by
c, = d>0, k=1,,n (18)
(18) indicates that three caster wheels should be
identical in structure with the length of the steering
link equal to the radius of the wheel.
From (12) and (16), the isotropy condition on A is
obtained by

A'A = F 1, (19)

which leads to the following three conditions:
Cil: fn'l_‘gkgk'=%lz
ce - Zn:(gk'hk)gk=0 20)
In general, C1 and C2 are functions of the steering
joint angles, ¢,, £=1,2,3, from which the isotropic
configurations are determined. With ¢, £2=1,2,3,

known, C3 determines the characteristic length required
for the isotropy, denoted by L ..

C. Actuation Sets

Table 1 bsts all possible actuation sets, ©, of a
COMR with different number and combination of
rotating and steering joints. Prior to the isotropy

analysis, let us examine the periodicity of A’ A. Let
A; i=1,2,3, be the submatrix of A, corresponding
to the ¢ % caster wheel, so that
A'A = A'A, + ASA, + ASA,
21
In general, A; i=1,2,3, is periodic with respect to
the steering joint angle ¢, with period 2=:

A,‘(@,’) = Ai((X)iiZ‘l{) (22)
However, when only the rotating joint is actuated,
A,’(¢,’) = - A,‘(d)iin) (23)

And, when both rotating and steering joints are not
actuated, A; = 0. These periodic properties allow us
to consider the isotropy of a COMR over the reduced
configuration space, denoted by &, instead of the entire
configuration space, 0<¢,, ¢,, ¢;<2n. For instance, in

the case of ®={8,,0,,0,}, A’ A is a function of ¢,

with period 2r and a function of ¢, with period =, so
that @ is given by 0<¢,<2r, 0<¢,<=. Notice that the
occurrence of the isotropy is independent of the steering
joint of the unactuated cater wheel.

ITI. Local Isotropy Analysis

4. 6=1{0,,0,, 6,
First, under the first isotropy condition of C1, we
have

et e+ ¢y =
1S F+ Cy83+ ¢35y =

1.5

0.0 (24)
where ¢,= cos(¢,) and s,=sin(¢,), £=1,2,3.

Satisfying (24), there are two different groups of

possible distributions of { u,, £#=1,2,3 } on the unit

circle. The first group of four distributions is given by

and  0;=0,+ %, 0,— 2%

(25)
Geometrically, u,, u,, and u, lie on three sides of

¢2=¢I+2_“’ ®1_3L

a regular triangle in counterclockwise order. On the
other hand, the second group of four distributions can
be obtained by alternating u, and wu, so that u,,
u, and uy lie on three sides of a regular triangle in
clockwise order. Note that both groups of eight
distributions can be characterized as
Vit vyt vy =0 (26)
Second, under the second isotropy condition of C2,

we have
3 3

$(vktsk)vk=$ukvk=0
27

h _ 1 _2 _ 1 2
Wereul—ﬁcos(tbl 3, ﬂ2—7‘3'005(¢’2+3“),

and a3=7% cos(¢4). It can be shown that the first

group of four distributions given by (25) also satisfy
(27). Fig. 2a) illustrates the isotropic configuration of a
COMR, where three steering links are symmetric with
respect to the center of the platform. On the other hand,
the second group of four distributions cannot satisfy
(27), and the isotropy of A cannot be achieved.
Finally, with (25) held, under C3, the characteristic
length L ., of an isotropic COMR is obtained by

0<Liso=\/§us@1 (28)
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a) 0=1{0,,0,,0;)

d) ©=1(8,,6,,0, 0,0, 05}

Fig. 2 The isotropic configurations of a COMR.

where
la)] = la,l = layl = «a (29)
If L=L ,, the isotropy occurs as four points in the
entire configuration space, which is the intersection of
the lines given by (25) and the plane given by (28).
Notice that the isotropic configurations change
depending on the selection of L .. Otherwise, the
1sotropy does not occur. Similar analysis can be made
for the case of © = {0, 05, 0,}.

B.0=1{0,,0,,0,}

First, under C1, we have

u; £ vy = vy =0 (30)

Next, under C2, we have
(u)'s;—d)u, +(v)'s;)v, +(vysy)v, =0
31

which cannot be satisfied unless @=0. This tells that
the isotropy of A can be achieved only when caster
wheels reduce to conventional wheels with no steering
link. Similar analysis can be made for @ = {¢,, ¢,, 6,).

C.6=1{8,,0,,0,}
First, under C1, we have
¥ = 0.5, cy5, = 0.0 (32)
There does not exist ¢, satisfying (32). This tells
that the isotropy of A cannot be achieved at all. Similar
analysis can be made for ® = {6, ¢,, 0,}.

D. ©=1{06,,0,,9,,0,}
First, C1 holds always. Next, under C2, we have
p, + p, =0 (33)
which yields
o, = arcsin(zﬁl??i,), by = T— 0,
(34)
subject to d = —27]? Fig. 2b) Iillustrates the

isotropic configuration, where the steering links of two
caster wheels are symmetric with respect to y-axis,
with the centers of two caster wheels and the center of

the platform lying on the line of y=AWl-3-. Note that

the isotropic configuration does not exist if the length

. S /
of the steering link is less than EER
Finally, with (34) held, under C3, the isotropic
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characteristic length L ,, is obtained by

Ly = (I p =1l p, Il (35)

where
I by ll=%—deos(o) and Il p, Il= %+ dcos(o,)
(36)

Solving (35) yields

Y AN S o
L, = 24/(1 15 (37

which is a constant. If L=L ,,, the isotropy occurs
at one point in the configuration space of (o,,0,),
which satisfies (34) and (37). Otherwise, the isotropy
does not occur.

E. 0=1{0,,0,,0,, 6,

First, under C1, we have

sin (2¢,) + sin(2¢,) = 0.0 (33)

which yields
03 = Oyrg (39)
Note that v, and v, should be perpendicular to

each other. Next, under C2, we have

p, + (v, s; ) vy, + (vysy) vy, =0 (40

Fig. 2¢) illustrates the isotropic configuration, where
the steering links of two caster wheels with active
rotating joints are perpendicular to each other and the
center of the other caster wheel with active rotating and
steering joints is located in such a way as to satisfy
(40).

Finally, with (39) and (40) held, under C3, the
isotropic characteristic length L , is obtained by

L= (o, li=V € vy sy + ( vy s5)2)
(41)
which is fixed. If L=L ., the isotropy occurs at

eight or four points in the entire configuration space,
which satisfy (39), (40), and (41). Otherwise, the
isotropy does not occur. Similar analysis can be made
for 8=1{6,,9,,¢,, 03} and 6= {0,0,, 65, 0,4}.

F. o= {81, 6, 9,, 0y, 63}
First, under C1, we have
= 0.5, ¢35 = 0.0 (42)
for which there does not exist ¢, and the isotropy of
A cannot be achieved at all. Similar analysis can be
made for © = {8,,06,,9,, 6,, 05}.

G o= {91» 01,05, 05, 03, ‘1’3}
First, C1 holds always. Next, under C2, we have

Z‘S:pk =0 (43)

which yields

4)2 = ‘Dli%l[—, ¢3 = ®1¢ZTK (44)

Fig. 2d) illustrates the isotropic configuration of a
COMR. where the centers of three caster wheels are
symmetric with respect to the center of the platform.

Finally, with (44) held, under C3, the isotropic
characteristic length L ., is obtained by

Ly = L300 b2 (45)

where
oy 1P = &+ ()2 = 24 cos (0, — )
I pe 12 = a4+ ()2 =2 cos(0,- g )
2 . JARY dl
Il oy 12 = @+ ()t =~ F cos (o3 + )

(46)
If L=L ,, the isotropy occurs at a single point in
configuration space, which are the
intersection of the line given by (44) and the plane
given by (45). Otherwise, the isotropy does not occur.

the entire

IV. Global Isotropy Analysis

A. Periodicity
Let us define the local isotropy index of a COMR,
denoted by o, as the ratio of the minimum to the
maximum among the singular values of A. Note that o
is the inverse of the condition number of A and ranges
between 0 and 1, that is, 0<o0<1. In general, ¢ is a
function of the actuation set ©, the configuration
(¢,,0,,05), the characteristic length L, and the
steering link length & (equal to the wheel radius #):
0 = 0(0,0,,0, 04 L,d) 47
For simulations, we set the side length of the
platform as /=1.0 [m], and the length of the steering
link as d=0.1 [m]. The size of d relative to { will be
discussed at the end of this section.
For a given actuation set ®= {0,,0,,0,}, Fig. 3
plots  of 0(6,=0,0,,0;) and
o(dy, 0y, 0;=0) for 0<0,,06;,<2rn and 0<o,,0,<2m,

shows  the

respectively, with L= \/% cos (6, — —%— ) From
6, =0

Fig. 3, the following can be observed. There are four
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isotropic configurations, (0,,0,,0,)=(0, ZT’I , % ),

2 _2n _n = _E& _2m
(0,31r, 3 ), (0, 3,3), and (0, 373 ), for
which L=L ,, and o=1.0. And, o is periodic with
respect to ¢,, ¢, and ¢, with period =, so that the

reduced  configuration
0<0,, 0y, 03=m.

space Q is given by

Fig. 3 The plots of o in the case of e={e,,0, 0.} a)
and b) 0(¢1,¢2,¢3:O)-

B. Optimal Characteristic Length
Let us define the global isotropy index of a COMR,

denoted by
isotropy index o over the reduced configuration space

‘o, as the average value of the local

Q. Now, o is a function of the actuation set ©, the
characteristic length L, and the steering link length &
o = 0o(0,L,d) (48)

By choosing o as the optimization criterion, the
optimal characteristic length, denoted by L, can be
determined according to ©, which results in the
maximum value of o, denoted by © . In the cases of
0=1{0,,0,,0,}, {ep 01, O, 0y}, {el» 01,05, 05,03},
and {0,,0,,6,,0,, 04, 0,}, Fig. 4 shows the plots of ¢
for 0.0<L<1.0, all of which are convex with no
exception. Table 1 lists L,, and o, for all possible
actuation sets, which can be divided into six groups
with reference to the magnitude of ¢ ,,.. From Table 1,
the following can be observed. As the number of joints
increases, o,, becomes increasing strictly regardless
of the existence of the isotropic configurations. With the
same number of joints, for larger value of o, the
rotating joint is preferred to the steéring joint and the
actuation of both rotating and steering joints per caster
wheel is preferred. Notice that L., is about 0.6 [ml],

however, o,,. ranges between 0.26 and 0.89.
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Fig. 4 The plots of o a) e={e,,0,,0,),
b) ®=(el,®1,92‘¢2}, C) ®={9|,¢1,92,¢2.93}, and
d) 8= {61,01,92,(1)2,93,@3}.

Table 1. The optimal characteristic length L, and the

maximum global isotropy index o ..,

Actuation set © L, [m] Emax Group
{6,,6,,0,) 0.62 0.2668
{6,,6,,0,} 0.63 0.2654 A
{61, 04,034} 0.63 0.2640
{01, 0q, 03) 0.63 0.2626
{0,,0,,0;) 0.59 0.3645 1
{6, 0,,0,) 0.59 0.3604

{6,,0,,8,,0,) 0.58 0.5715 4A

{0,,.0,,0,,64) 0.60 0.5039

{61, 0,, 05,03} 0.61 0.5004 4B

{01, 0,05, 03} 0.61 0.4970

{8,,0,,0,,0,,0,} 0.60 0.6765 S
{6,,0,,6,, 0y, 04} 0.60 0.6689
{0,,0,,0,,0,,0,,06] 059 0.8918 6

C. Effect of Steering Link Length
Finally, let us discuss the effect of the length of
the steering link, d, relative to the side length of the
platform, /. In the case of @=1{0,,0,,0,, 0, 03, 03},
Fig. 5 shows the plots of the maximum global isotropy
index o, for 0.0¢(L<1.0 and 0.1<d<0.5. From

Fig. 5, it can be observed that L, becomes larger and

Omax becomes smaller, as d increases, This implies
that the relative size of o should be kept small for high

global isotropy index.
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Fig. 5 The plots of o, in the case
Of 0= {6|,¢],62.‘D2' 93.¢;;).

V. Conclusion

This paper investigated the local and global
isotropy of a caster wheeled omnidirectional mobile
robot (COMR) wunder all possible actuations with
different number and combination of rotating and
steering joints. First, with the characteristic length
introduced, the kinematic model and the isotropy
conditions were obtained. Second, the geometric
conditions for the local isotropy were derived and all
isotropic configurations were fully identified. Third, the
global isotropy index was examined to determine the
optimal actuation set, characteristic length, and steering
link length. It is hoped that the results of this paper
can be useful for the optimal design and control of a
COMR.
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