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Mobile Robot with Nonredundant/Redundant Actuation

Sungbok Kim and Byungkwon Moon

Abstract: In this paper, we present the complete isotropy analysis of a caster wheeled
omnidirectional mobile robot (COMR) with nonredundant/redundant actuation. It is desirable for
robust motion control to keep a COMR close to the isotropy but away from the singularity as
much as possible. First, with the characteristic length introduced, the kinematic model of a
COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a
general form of the isotropy conditions of a COMR 1is given in terms of physically meaningful
vector quantities which specify the wheel configuration. Third, for all possible nonredundant and
redundant actuation sets, the algebraic expressions of the isotropy conditions are derived so as to
identify the isotropic configurations of a COMR. Fourth, the number of the isotropic
configurations, the isotropic characteristic length, and the optimal initial configuration are
discussed.

Keyword: Caster wheeled mobile robot, characteristic length, isotropic configuration, redundant

actuation.

1. INTRODUCTION

The omnidirectional mobility of a mobile robot is
required to navigate in daily life environment which is
restricted in space and cluttered with obstacles.
Several omnidirectional wheel mechanisms have been
proposed, including universal wheels, Swedish wheels,
orthogonal wheels, ball wheels, and so on [1,2].
Recently, caster wheels were employed as a practical
and effective means to develop an omnidirectional
mobile robot at Stanford University, which was later
commercialized by Nomadic Technologies as XR4000
[3]. Since caster wheels operate without additional
peripheral rollers or support structure, a caster
wheeled omnidirectional mobile robot or a COMR
can maintain good performance even under varying
payload or ground condition.

There have been several works on the kinematic
issues of a COMR. For a general form of wheeled
mobile robots, a systematic kinematic modeling
procedure was developed [1,2]. Regarding the
minimal admissible actuation, it was shown that at
least four joints out of two caster wheels should be
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actuated to avoid the singularity [4]. For some specific
actuation sets, the global isotropic characteristics over
the entire wheel configurations was considered to
obtain the optimal design parameters of the
mechanism [5]. For representative actuation sets, the
algebraic conditions for the (local) isotropy were
derived to identify the isotropic configurations [6]. On
the other hand, for an omnidirectional mobile robot
employing Swedish wheels, the isotropy analysis was
made but the results are incomplete and need further
elaboration [7].

For a COMR having n(>3) actuated joints, the

relationship between the joint velocity, ® € R™!, and
the task velocity, xe R™!, can be expressed in the
form of Ax=B®, where AcR” and BeR"™

are the Jacobian matrices [6]. Note that 4 is a
function of a given wheel configuration, while B is
always nonsingular independently of the wheel
configuration. When the rank of A is less than three,
a COMR falls into the singular configurations, in
which the task velocities within the nullspace of A
can be produced even with all the actuated joints
locked [8]. On the other hand, when three singular

values of B"' A become identical, a COMR reaches

the isotropic configurations, in which the joint
velocities required for a unity task velocity in all
directions are uniform in magnitude [9]. Obviously, it
is desirable for robust motion control to keep a
COMR away from the singular configurations but
close to the isotropic configurations, as much as
possible [7].
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The purpose of this paper is to completely identify
the isotropic configurations of a COMR with
nonredundant/redundant actuation. This paper is
organized as follows. With the characteristic length
introduced [7], Section 2 presents the kinematic model
based on the orthogonal decomposition of the wheel
velocities. In Section 3, a general form of the isotropy
conditions is given in terms of physically meaningful
vector quantities specifying the wheel configuration.
For all possible nonredundant and redundant actuation
sets, Sections 4 and 5 derive the algebraic expressions
of the isotropy conditions to identify the isotropic
configurations. Section 6 discusses the number of
isotropic configurations, the isotropic characteristic
length, and the optimal initial configuration. Finally,
the conclusion is made in Section 7.

2. KINEMATIC MODEL

Consider a COMR with three caster wheels
attached to a regular triangular platform moving on
the xy-plane, as shown in Fig. 1.

Let / be the side length of the platform with the
center O,, and three vertices, O;, i=1,2,3. For

i=1,2,3,

we define the following. Let d; and 7; be the length of
the steering link and the radius of the wheel,

respectively. Let 6, and ¢; be the angles of the

the i caster wheel with the center P

rotating and the steering joints, respectively. Let u;
and v; be two orthogonal unit vectors along the
steering link and the wheel axis, respectively, such
that

—CoS @; —sing;
ul = . . vl = . (1)
—sing; COS@;
Note that
t t_
uu; +vv, =1,, (2)

Fig. 1. A caster wheeled omnidirectional mobile robot.

Zui=0<:>zvi=0, (3)

where I is the identity matrix and 0 is the zero vector.
Let p; be the vector from O, to F, and q; be the

rotation of p; by 90° counterclockwise. Note that
2.4;=0= ) p, =0, 4
3 3
dpi=0Du =0 )
1 1

Let and v be w the linear and the angular
velocities at O, of the platform, respectively. For the

i caster wheel, i =1, 2, 3, the linear velocity at the

point of contact with the ground can be expressed by
vioq=r 6 w+d ¢ v, i=1,2,3.  (6)
Premultiplied by u,;/ andv,, we have
o' viu'q w=r6;, i=12,3, (7)
viviviq w=d ¢, i=1273. (8

Assume that #(3<n<6) joints of a COMR are
actuated. With the characteristic length, L(>0),

introduced [6], the kinematics of a COMR can be
written as

Ax=BO, )

where X = [v L a)]t eR>! is the task velocity vector

and © e R™!is the joint velocity vector, and

‘ 1

g1 2 glt h,

A=| : eR™3, (10)
g, % g, h,
G 0

B=| : . 1 |eR™", (11)
0 c

are the Jacobian matrices. In (10), g,, k=1,---, n,
i=1,2,3, while
h,, k=1,---,n, corresponds to q;, i=12,3. In

corresponds to either u; or v,,

(11), ¢, , k=1,---,n, corresponds to either 7, or
d;,, i=1,2,3. It should be mentioned that the

I
introduction of the characteristic length L makes all
three columns of A to be consistent in physical unit.

The expression of gkt h,, k=1,---,n, can be
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simplified as follows. In the case of the rotating joint
for which g, =u; and h; =q;, i=1,2,3,
g by =u/ q;=v/p;. (12)

And, in the case of the steering joint for which

g'hy=v/q; = -u/p;. (13)

It is worthwhile to mention that our kinematic
modeling of a COMR does not involve matrix

inversion, unlike the transfer method proposed in [2,5].

For a given task velocity, the instantaneous motion of
the wheel is decomposed into two orthogonal
components: the instantaneous motion of the rotating

joint and the instantaneous motion of the steering joint.

The resulting kinematic model allows us to perform a
geometric and intuitive analysis on the isotropy of a
COMR.

3. ISOTROPY CONDITIONS

Based on (9), the necessary and sufficient condition
for the isotropy of a COMR is given by

B'A) B'A)«I. (14)
In [5], it is found to be optimal for global isotropic
characteristics that three caster wheels are identical to

have the steering link length equal to the wheel radius,
that is,

¢ =d>0, k=1, ,neoBocl. (15)
Under the assumption of (15), (14) becbmes

A" A 1. (16)
Note that in fact (15) and (16) are the sufficient
conditions for the isotropy of a COMR.

From (10) and (16), the isotropy condition on A is
obtained by

A Azg I, (17)

which leads to the following three conditions:
Z n
Cl:>g g = She R,
1
n
C2: > (@' hyg, =0eR>™, (18)
1

1 & n '
C3: 5> h)?=2ecR™
*4 2

In general, C1 and C2 correspond to three and two
scalar constraints, respectively, which are imposed on
three steering joint angles, ¢, k=1, 2,3. Thus, the
isotropy of a COMR can occur only at specific values
of ¢, k=1,2,3, called isotropic configurations, for
which C1 and C2 are satisfied simultaneously. For a
given isotropic configuration, C3, corresponding to
one scalar constraint, determines the characteristic
length required for the isotropy, denoted by L;,.

In what follows, it is assumed that a COMR has
three identical caster wheels having the steering link
length equal to the wheel radius.

4. ISOTROPY ANALYSIS FOR
NONREDUNDANT ACTUATION

4.1. Nonredundant actuation sets
A COMR with nonredundant acuation can have

three actuated joints (n=3), each of which can be

either rotating or steering one. According to the
number of active wheels and the combination of
actuated joints, all possible nonredundant actuation
sets, ©, can be divided into three groups, denoted by
NAG I, II, and III, as listed in Table 1.

4.2. Isotropy analysis for NAG I
Consider ®={f,, 6,, 85} where three rotating

joints of three caster wheels are actuated, for which
[gl 22 g3]:[u, u; “3]-
Under the condition of C1, we have

3
dww =15 1I,, (19)
k=1

which is

- C'12 +C]2 +012 = 15,

(20)
s +os +¢s = 0.0,
Table 1. Three nonredundant actuation groups.
Number Number Nonredundant
of . . .
of active Actuation set actuation
actuated wheels TOou
joints group
0={0,, 0,, 03}
NAGI

O={p, ¢,, 93}

0={p,, &,, 03}
n=3 NAGIH
O={9, 9,, 03}

0=1{0, ¢, 0,5}
2 NAG III
0=1{0, 91, 0}
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where ¢; =cos(g,) and s, =sin(egy), k=1, 2, 3.
There are ecight different distributions of {u,
k=1, 2, 3} satisfying (20), which can be divided

into two distinctive groups characterized, respectively,
by

_ +3,[ _r —p.+ X _:2_,[ 1)
Q=9 3 > 91 3’(/’3—¢’1 3,(p1 3"
T 2 2 T

=Qi+—, @y -7, =@y +=m, ¢ ——,(22

Q=0 3 Q1737 3=t 04 3( )

as shown in Fig. 2. The first group of four
distributions, characterized by (21), is common in that
Uy, Uy, and u; lie on three sides of a regular triangle in
counterclockwise order, as shown in Fig. 2(a). On the
other hand, the second group of four distributions,

characterized by (22), is common in that u;, u,, and

u; lie on three sides of a regular triangle in

clockwise order, as shown in Fig. 2(b).
Under the condition of , we have

i(“kt qk)uk =Z?:(vk’ pk)uk=0, (23)
1

which is equivalent to
3., 3
Z(Vk Qk)Vk =>4 v =0, (24)
1 1

where a; =v,' p;, k=1,2,3, is the projection of
px onto v,. For the first group of four distributions
characterized by (21), it can be shown that [5]

|all=|a2‘=| a3‘=(x, (25)
(4] V1+a2 v2+a3 V3 =0. (26)

While C1 places two scalar constraints, given by
(20), on three variables, ¢, @,, and @3, C2 does

not place additional constraint. As a result, there are in-

/N /\ /\ 7o\

———»——»——»—-»

NN /N7

——»——»—P——P

(b)
Fig. 2. Two distinctive groups of the distributions of
{ug, k=1, 2, 3}: (a) counterclockwise order
and (b) clockwise order.

~~~~~~~~

(b)
Fig. 3. Isotfqpic configurations for NAG I : (a) @ =
{61, 6,, 6} and (b) @={g, 05, 03}.

finitely many isotropic configurations in general. Fig.
3(a) illustrates an isotropic configuration of a COMR,
where three steering links form a regular triangle
centered at the platform center, inscribed by a circle of
radius a.

On the other hand, it can be shown that the second
group of four distributions characterized by (22)
cannot satisfy (24), so that the isotropy of A cannot be
achieved.

Similar analysis to the above can be made for ®

={o, 5, 3}, where three steering joints of three

caster wheels are actuated. Fig. 3(b) illustrates an
isotropic configuration of a COMR, where three
wheel axes form a regular triangle centered at the
platform center, which is inscribed by a circle of

radius ﬂ(=|u1t P =|u2’ P, |:|u3t p3l).

4.3. Isotropy analysis for NAG II
Consider @ ={¢;, 6,, 65} where one steering and

two rotating joints of three caster wheels are actuated,
for which g g, g3]=[v; u; u3}.
First, under C1, we have

Vi Vlt +u2u 21 +U3U3t = 1512 . (27)
Next, under C2, we have

vi'q)v; + (@2 g)u, +(us'qz)u; =0, (28)

Q
=

(u'p)u; + (va'py)vy +(vs'p3)vs =0. (29)

With (27) being held, it can be shown that (29) cannot
be satisfied unless d is equal to zero [5]. This tells that
the isotropy of A can be achieved only when caster
wheels reduce to conventional wheels without steering
link. Fig. 4(a) illustrates an isotropic configuration of
a conventional wheeled mobile robot.

Similar analysis to the above can be made for

O ={¢, ¢, 05}, where two steering and one rotating
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Fig. 4. With d =0, isotropic configurations for NAG
I: @) ©={gp, 6,, 6;} and(b) O={p, vy,
63}

joints of three caster wheels are actuated. Fig. 4(b) .

illustrates an isotropic configuration of a conventional
wheeled mobile robot.

4.4. Isotropy analysis for NAG III
Consider © = {Hl s Pl 92} where both rotating

and steering joints of one caster wheel and the rotating
joint of another caster wheel are actuated, for wh1ch
[g1 2 g3] [“1 Vi “2] :

First, under C1, we have

' + vy +uyu,’ =1.51,, (30)
which is
¢2 =0.5, ¢35, =0.0. (31)

There does not exist ¢, satisfying (31), and the
isotropy of A cannot be achieved at all.

Similar analysis to the above can be made for
©=1{6,, ¢, ¢,}, where both rotating and steering

joints of one caster wheel and the steering joint of
another caster wheel are actuated.

5. ISOTROPY ANALYSIS FOR
REDUNDANT ACTUATION

5.1. Redundant actuation sets
A COMR with redundant acuation can have four,
five and six actuated joints (rn=4, 5, 6), each of

which can be either rotating or steering one.
According to the number and combination of actuated
joints and the number of active wheels, all possible
redundant actuation sets, ®, can be divided into five
groups, denoted by RAG I, II, III, IV, and 'V, as listed
in Table 2.

5.2. Isotropy analysis for RAG 1
Consider ® ={6}, ¢, 6,, ¢,} where both rotating

Table 2. Five redundant actuation groups.

Number

f Number Redundant,
to " dof active] Actuation set actuation
aJC.Olilﬁt: wheels group
2 |0={6, ¢, 0, 0} RAGI
0={6, ¢, 6,, 0
n=4 . o1, 6, 63} RAGII
3 10=1{8, ¢, 0. 95}
0=16, ¢, 6, 03} RAG 111
0=14, &, ¢, O
n=5| 3 G N N M
0={6,, ¢, 0, 95, 3}
n=6| 3 |0={6, @, 65, 9. 6, 93} RAGV

and steering joints of two caster wheels are actuated,
for which [gl ) g3 g4] = [ll] Vi U2 Vz] .

First, under C1, we have
2
> (upwy’ +uu’)=21,, (32)

1

which always holds. Next, under C2, we have

2 2
Dl gu ~(vilg vl =D a4, =0, (33)
1 1

or
p+p, =0, (34)
which yields
o :arcsin(L i), O =T — Q. (35)
23 d

Since C1 places no constraint and C2 places
two scalar constraints, given by (34), on two variables,
¢, and ¢,, in general, there are multiple isotropic
configurations independently of ¢;. Fig. 5 illustrates
an isotropic configuration, where the steering links of

Fig. 5. An isotropic configurations for @ ={6;, ¢,
6, ¢»} belonging to RAG L
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two caster wheels are symmetric with respect to y-axis,
with the centers of two caster wheels and the center of

the platform lying on the line of y = —l— Note that

23

the isotropic configuration does not exist if the

steering link length is less than I .

23

5.3. Isotropy analysis for RAG II
Consider @ ={6;, ¢, 6,, 63} where both rotating

and steering joints of one caster wheel and two
rotating joints of two caster wheels are actuated, for
which [gl g g g4]=[u1 V] u, u3].

First, under C1, we have

wus +uguy’ =1,, (36)
which is
C2S2 + C3S3 = 0.0 N (37)
hence
T
0= J—r—z' . (38)

Note that u, and u; are perpendicular to each other,
and so are v, and v;. Next, under C2, we have

q; +(uy qp)uy +(us q3)uz =0, (39)

or
1+ (V) Po)vy +(vy p3)vy =0. (40)

Since C1 places one scalar constraint, given by (37),
and C2 places two scalar constraints, given by (40),
on three variables ¢, ¢,, and ¢, there are

multiple isotropic configurations in general. Fig. 6(a)
illustrates an isotropic configuration, where the
steering links of two caster wheels with actuated
rotating joint are perpendicular to each other and the
center of the other caster wheel with actuated rotating
and steering joints is located under the constraint of
(40).

Fig. 6. Isotropic configurations for RAG II: (a) @ =
{913 (4B 92: 03} and (b) 0 ={01, D15 P> ¢3} .

Similar analysis to the above can be made for
0= {01 > @1 0, ¢3} where both rotating and steering
joints of one caster wheel and two steering joints of
two caster wheels are actuated. Fig. 6(b) illustrates an
isotropic configuration, where the steering links of
two caster wheels with actuated steering joint are
perpendicular to each other, and the center of the other
caster wheel with actuated rotating and steering joints
is located under the following constraint:

Py + () py)uy +(us pyluy =0 41

5.4. Isotropy analysis for RAG III
Consider @ = {01, @, 05, go3} where both rotating

and steering joints of one caster wheel and one
rotating and one steering joints of two caster wheels

are actuated, for which [g; g, g384]=[u; vju; v3].

First, under C1, we have

wudtvyvy =15, (42)
which is

Cr8y — 383 =0.0, 43)
hence

P3=¢;. (44)

Next, under C2, we have

q + (“2t qp)uy + (V3t q3)v3 =0, (45)

or
q; +(uy qp)uy +(v3' q3)v3 =0. (46)

Since C1 places one scalar constraint, given by (43),
and C2 places two scalar constraints, given by (46),
on three variables, ¢, ¢,, and ¢;, there are
multiple isotropic configurations in general. Fig. 7
illustrates an isotropic configuration, where the
steering links of one caster wheel with actuated

Fig. 7. An isotropic configuration for ®={6,, ¢,
6,, @3} belonging to RAG IV.
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rotating joint and another caster wheel with actuated
steering joint are parallel to each other, and the center
of the other caster wheel with actuated rotating and
steering joints is located under the constraint of (46).

5.5. Isotropy analysis for RAG IV
Consider ©={6, ¢, 6, ¢,, 6;} where both

rotating and steering joints of two caster wheels and
the rotating joint of one caster wheel are actuated, for
which [g; g, g5 g4 g5]=[w v; uy v5 u3].

First, under C1, we have

usuy’ =0.51,, (47)
which is
2 =0.5, ¢35 =00. (48)

There does not exist ¢y satisfying (48) and the

isotropy of A cannot be achieved at all.
Similar analysis to the above can be made for

@z{@l, @1, 05, @5, 93} where both rotating and

steering joints of two caster wheels and the steering
joint of one caster wheel are actuated.

5.6. Isotropy analysis for RAG V

Consider @ ={6;, ¢, 6,, @5, 65, @3} where both
rotating and steering joints of three caster wheels are
fully actuated, for which [g; g, g3 g4 g5 8]=
[ur vy uy v uz vs].

First, C1 holds always. Next, under C2, we have

> by =0, (49)

Fig. 8. An isotropic configuration for @ = {491, D1
65, ¢, 05, p3} belonging to RAG V.

27 _2n
»=ot— ;3= +t—. (50)

3 3
Since C1 places no constraints and C2 places two
scalar constraints, given by (49), on three variables,
@, ¢, and @3, there are infinitely many isotropic

configurations in general. Fig. 8 illustrates an
isotropic configuration of a COMR. where the centers
of three caster wheels are symmetric with respect to
the center of the platform.

6. SOME DISCUSSIONS

6.1. Number of isotropic configurations

Depending on the selection of actuated joints, the
number of isotropic configurations which satisfy C1
and C2 can be either none, multiple(finite), or infinite.
Table 3 lists the nonredundant and the redundant
actuation sets resulting in more than one isotropic
configuration. From Table 3, the following
observations can be made. When the actuation of
three caster wheels are homogeneous, including

0={6, 0,, 63}, {0, 93, 3}, and {91,%,92,(/’2,

65, (/73}, there are infinitely many isotropic
configuretions. When the number of actuated joints

are redundant, including @ ={6,, ¢, 6,, 05}, {6,

¢]5 (/’2, ¢3}7 {015 @17629 (03}’ and {01’%’92: ¢2}’
there are multiple isotropic configurations. The only
two exceptions are @ ={6;, ¢, 65, ¢y, 3} and

{61, 91, 65, 5, @3}. Tt should be mentioned that

both homogeneity in wheel actuation and redundancy
in joint actuation play a significant role for enhancing
the isotropy of a COMR.

6.2. Isotropic characteristic length

As described in Section 3, the isotropy of a COMR
can be achieved under three conditions, C1, C2, and
C3. Once an isotropic configuration is identified
under C1 and C2, the characteristic length required
for the isotropy, L, can be determined under C3.

As an example, let us consider the case of

0 =1{6,, 9,, 65} . Under C3, we have

13 1
?Zm;%f=§20;mfﬂ5. (51)
1 1

With (21) being held, from (51), the characteristic
length of an isotropic COMR is obtained by

Lo =(vPH vy Py Hvi'ps 1) (52)

For all actuation sets with more than one isotropic
configuration, Table 3 also lists the resulting isotropic
characteristic length L,,. Note that the isotropy of a
COMR cannot be achieved unless L = L;,.
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Table 3. All actuation sets resulting in more than one isotropic configuration.

Actuation Actuation set @ Number of1s9trop 1 Isotropic characteristic length L;,
group configurations
6, 6,, 65} Infinite v py =] vy ps =] VS
NAGI 1, 02, O3 . (] 1tP1| | 2tP2| | 3tP3|)
{on, 00, 03} Infinite (lug py |=luy py|=|uz p3 )
RAGI {0, o, 65, ¢y} Multiple (I [I=llp2 1D
2 2
. 0. 05, 6;) Multiple (upl |\=\/ (v2'p2) +(vs'ps) ]
RAGII
2 2
{6, @1, 92, 93} Multiple (” P1 ”:\/ (uzt Pz) +(“3t P3) J
. t 2 t 2
RAGII | {6, ¢, 6, ¢} Multiple Ipil=y (v2'Pa) +(us'ps)
RAGV ({6, o, 05, 93, 65, @3} Infinite (reg lI=1p2 Il =1ip3 1)

6.3. Optimal initial configuration

For a given task velocity trajectory, the wheel
configurations are subject to undergo different
changes depending on the initial configuration chosen.
Unless the initial configuration is set carefully, a
COMR may suffer from poor isotropic characteristics
during task execution, which is undesirable for robust
motion control. To find the optimal initial
configuration with minimal computation, a simple but
effective measure should be devised, which can
evaluate the isotropic characteristics of a given wheel
configuration. As an example, let us consider the case
of ®@={6,, ¢, 65, 93, 63, s}.

Suppose that a task velocity trajectory over some
time interval, x(7), te[O T], with the prespecified
initial position, x(0), is given to a COMR. Using (8),

the steering joint angle at time ¢, ¢;(f), of the "
caster wheel is obtained by

0= 0,0)+ [ al (p(0) X(2)dr, 1 =1,2,3,(53)

where a/'(¢;) =[v/'(#) vi'(9;) 4 (9)]. Note that
@;(t), i=1,2,3, is sensitive to its initial condition

#;(0).
execution, /7, can be described as

IT={(p (1), p2(0), p3(1)), 1[0 T]}
=11(¢(0), 92(0), @5(0)).

The configuration trajectory during task

(54)

Note that 77 is a function of the initial configuration,

(21(0), ¢2(0), ¢3(0)).

With the prior knowledge of the isotropic
configurations, we propose to evaluate the isotropic
characteristics of a given wheel configuration based

on the distance from the isotropic configurations. With

@, =¢;—¢, i=2, 3, the isotropic configurations,

given by (50), can be expressed as two points in
2r 2x

(@2, @3)-space, (12;, —2?7[) and (_T’ ?) For
a given wheel configuration at time ¢, (¢(?), @, (),
@3(1)), the local isotropy measure, denoted by
dist(s), can be defined as the smaller value of the
weighted distances from (,(f), ¢5(¢)) to the two

isotropic points. A proper weighting would be a
function which returns zero when (@,(¢),

@(t)):(i%r, J_r%r), and returns larger value as

@) or ¢s3(t) approachestoOor £z, or (@,(1),

~ 2r | 2x

N)=x— t—).
P30 == 3)

Now, for a given configuration trajectory, II
(¢(0), 9,(0), @5(0)), the global isotropy measure,

denoted by DIST(IT), can be defined as

2

DIST(H) =max; . [0 T ]dlst(f) . (55)

Geometrically, DIST(/7) can be interpreted as the
radius of the smallest circle in (¢,, @;)-space, which

contains all the deviations from the isotropic
configurations along II . Finally, among all possible
configuration trajectories resulting from different
initial configurations, the optimal initial configuration,

(@™ (0), 9,7 (0), 237 (0)),
through the optimization given below:

can be determined

MiNy( o (0), 0300, 3(0))yPISTUT) (56)

=Mmily( g, 0), py(0), g3(0))[M3X; c[o 7 distD)]-
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Note that for a given I7, computing dist(t) can be

stopped immediately after the value of dist(f) becomes
greater than or equal to the smallest among the global
isotropy measures already computed. By choosing
(@7 (0), 9,7 (0), ;7 (0)), the maximal deviation
from the isotropic configurations during task
execution can be kept small as much as possible,
which is desirable for robust motion control.

Since the initial configuration optimization for
improved isotropic characteristics requires nested
multiple loops, the associated computational cost
depends heavily on how to devise a local isotropy
measure within the innermost loop. The local isotropy
measure, dist(f), which is devised using the prior
knowledge of the isotropic configurations, is not only
physically meaningful but also simple in computation.
An alternative measure without such knowledge
would be the condition number of the Jacobian matrix,
A, which requires far more expensive computation
than dist(?).

7. CONCLUSION

This paper presented the complete isotropy analysis
of a caster wheeled omnidirectional mobile robot
(COMR) with nonredundant and redundant actuation.
All possible actuation sets with different number and
combination of rotating and steering joints were
considered. First, with the characteristic length
introduced, the kinematic model was obtained.
Second, a general form of the isotropy conditions was
given in terms of physically meaningful vector
quantities. Third, for all possible nonredundant and
redundant actuation sets, the algebraic expressions of
the isotropy conditions were derived so as to identify
the isotropic configurations completely. Fourth, the
number of the isotropic configurations, the isotropic
characteristic length, and the optimal initial
configuration were discussed. We hoped that the
isotropy analysis made in this paper can serve for
better design and control of a COMR with improved
isotropic characteristics.
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