• Title/Summary/Keyword: k-means++

Search Result 17,920, Processing Time 0.043 seconds

Extraction of Blood Flow of Brachial Artery on Color Doppler Ultrasonography by Using 4-Directional Contour Tracking and K-Means Algorithm (4 방향 윤곽선 추적과 K-Means 알고리즘을 이용한 색조 도플러 초음파 영상에서 상환 동맥의 혈류 영역 추출)

  • Park, Joonsung;Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1411-1416
    • /
    • 2020
  • In this paper, we propose a method of extraction analysis of blood flow area on color doppler ultrasonography by using 4-directional contour tracking and K-Means algorithm. In the proposed method, ROI is extracted and a binarization method with maximum contrast as a threshold is applied to the extracted ROI. 4-directional contour algorithm is applied to extract the trapezoid shaped region which has blood flow area of brachial artery from the binarized ROI. K-Means based quantization is then applied to accurately extract the blood flow area of brachial artery from the trapezoid shaped region. In experiment, the proposed method successfully extracts the target area in 28 out of 30 cases (93.3%) with field expert's verification. And comparison analysis of proposed K-Means based blood flow area extraction on 30 color doppler ultrasonography and brachial artery blood flow ultrasonography provided by a specialist yielded a result of 94.27% accuracy on average.

A Codebook Generation Algorithm Using a New Updating Condition (새로운 갱신조건을 적용한 부호책 생성 알고리즘)

  • 김형철;조제황
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.205-209
    • /
    • 2004
  • The K-means algorithm is the most widely used method among the codebook generation algorithms in vector quantization. In this paper, we propose a codebook generation algorithm using a new updating condition to enhance the codebook performance. The conventional K-means algorithm uses a fixed weight of the distance for all training iterations, but the proposed method uses different weights according to the updating condition from the new codevectors for training iterations. Then, different weights can be applied to generate codevectors at each iteration according to this condition, and it can have a similar effect to variable weights. Experimental results show that the proposed algorithm has the better codebook performance than that of K-means algorithm.

  • PDF

MUIRHEAD'S AND HOLLAND'S INEQUALITIES OF MIXED POWER MEANS FOR POSITIVE REAL NUMBERS

  • LEE, HOSOO;KIM, SEJONG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.33-44
    • /
    • 2017
  • We review weighted power means of positive real numbers and see their properties including the convexity and concavity for weights. We study the mixed power means of positive real numbers related to majorization of weights, which gives us an extension of Muirhead's inequality. Furthermore, we generalize Holland's conjecture to the power means.

Emotion Recognition using Bio-signal Measurements & K-Means Classifier (생체신호 분석과 K-Means 분류 알고리즘을 이용한 감정 인식)

  • Cha, Sang-hun;Kim, Sung-Jae;Kim, Da-young;Kim, Kwang-baek;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.386-388
    • /
    • 2018
  • 본 논문은 사회적 상호작용 결여로 감정 기복이 심하고 스트레스로 인해 정서불안 증세를 보이는 자폐 범주성 장애아동의 감정 상태를 인식하기 위한 목적으로 4가지 감정 자극에 대하여 생체신호를 분석하고 K-Means 알고리즘을 적용하여 획득한 정보로부터 감정 상태를 인식하는 방법을 제안한다. 실험구성은 참가자가 주어지는 감정자극 영상을 시청하는 동안 맥파 및 피부전도 센서를 이용하여 생체신호를 측정한 후 자율신경 비율을 나타내는 LF/HF의 심박 정보와 피부 반응 정보를 정량적으로 분석하였고, 추출된 정보로부터 K-Means 알고리즘을 적용하여 감정 상태를 분류하는 과정으로 진행된다. 총 3명의 일반인을 대상으로 실험을 진행하였으며, 4가지 감정 자극에 대한 실험을 수행한 결과, 생체신호 측정을 이용한 감정인식 방법이 제시되는 감정 자극을 충분히 분류할 수 있음을 확인할 수 있었다.

  • PDF

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

Selection of Cluster Hierarchy Depth in Hierarchical Clustering using K-Means Algorithm (K-means 알고리즘을 이용한 계층적 클러스터링에서의 클러스터 계층 깊이 선택)

  • Lee, Won-Hee;Lee, Shin-Won;Chung, Sung-Jong;An, Dong-Un
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.150-156
    • /
    • 2008
  • Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, with a large number of variables, K-means reduces a time complexity. Think of the factor of simplify, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system with hierarchical structure based on document clustering using K-means algorithm. Evaluated the performance on different hierarchy depth and initial uncertain centroid number based on variational relative document amount correspond to given queries. Comparing with regular method that the initial centroids have been established in advance, our method performance has been improved a lot.

Cloudy Area Detection in Satellite Image using K-Means & GHA (K-Means 와 GHA를 이용한 위성영상 구름영역 검출)

  • 서석배;김종우;최해진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.405-408
    • /
    • 2003
  • This paper proposes a new algorithm for cloudy area detection using K-Means and GHA (Generalized Hebbian Algorithm). K-Means is one of simple classification algorithm, and GHA is unsupervised neural network for data compression and pattern classification. Proposed algorithm is based on block based image processing that size is l6$\times$l6. Experimental results shows good performance of cloudy area detection except blur cloudy areas.

  • PDF

K-means Clustering using a Grid-based Sampling

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

K-means Clustering using a Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.229-238
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Wavelet Based Non-Local Means Filtering for Speckle Noise Reduction of SAR Images (SAR 영상에서 웨이블렛 기반 Non-Local Means 필터를 이용한 스펙클 잡음 제거)

  • Lee, Dea-Gun;Park, Min-Jea;Kim, Jeong-Uk;Kim, Do-Yun;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.595-607
    • /
    • 2010
  • This paper addresses the problem of reducing the speckle noise in SAR images by wavelet transformation, using a non-local means(NLM) filter originated for Gaussian noise removal. Log-transformed SAR image makes multiplicative speckle noise additive. Thus, non-local means filtering and wavelet thresholding are used to reduce the additive noise, followed by an exponential transformation. NLM filter is an image denoising method that replaces each pixel by a weighted average of all the similarly pixels in the image. But the NLM filter takes an acceptable amount of time to perform the process for all possible pairs of pixels. This paper, also proposes an alternative strategy that uses the t-test more efficiently to eliminate pixel pairs that are dissimilar. Extensive simulations showed that the proposed filter outperforms many existing filters terms of quantitative measures such as PSNR and DSSIM as well as qualitative judgments of image quality and the computational time required to restore images.