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Abstract

The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfor-
tunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are
clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both re-
producibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has
not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two cluster-
ing algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean
methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the
use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

Keywords: central subspace, hierarchical clustering, informative predictor subspace, K-means
clustering, multivariate slicing, sufficient dimension reduction

1. Introduction

In regression of Y € R"|X € RP?, sufficient dimension reduction (SDR) pursues to replace the original
p-dimensional predictors with its lower-dimensional linearly transformed predictor 57X without loss
of information on Y € R’|X € R?, where r > 1, p > 2 and 5 € R”™ with d < p. This is equivalently
stated as:

Y 1L XX, (1.1)

where 1l stands for statistical independence. The minimal subspace spanned by the columns 7 satisfy-
ing (1.1) is called central subspace Syx. Hereafter, 5y and d will represent an orthonormal basis matrix
and the structural dimension of Syjx. The d-dimensional predictor "X is called sufficient predictors.

Naturally, the main stream of SDR is to estimate 5. For r = 1, two inverse regression methods
of sliced inverse regression (SIR) (Li, 1991) and sliced average variance estimation (SAVE) (Cook
and Weisberg, 1991) are often used. The two methods commonly require a condition called linearity
condition such that E(X|pTX) is linear in TX. In their methodological development and practical
implementation, the categorization of the response variable is essential. Its categorization is called
slicing. The response is sliced for each category or to have equal numbers of observations (although
it is not strictly required). Readers are recommended to read Yoo (2016a, 2016b) for further insights
about SDR and details on SIR and SAVE.
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The background theories in SIR and SAVE remain the same when the response is multi-dimensional,
but there are practical changes in slicing responses. Then usual slicing scheme with multivariate re-
sponses is as follows. Let Y = (yy, ... ,y,)T. First, slice one of (yy,...,y,) into A; slices. For simplicity,
we consider the first response variable as y;. Next, pick another response, simply y,. Then, slice y,
into h; slices within each slice constructed by y; so to have total /; X h; slices. Following this slicing
scheme, responses are sliced one-at-a-time, and the resulted slicing has a hierarchical structure with
total [}, &; slices. For example, if r = 4 and h; = 2 for i = 1,2, 3,4, the total slices are 16, which is
the minimum number of slices. This hierarchical slicing scheme is straightforward and can be easily
implemented, but the number of slices exponentially increases according to the number of response
variables. This brings a smaller number of observations per slice, which results in the poor estimation
of Syjx through SIR and SAVE.

To avoid this issue, the K-means clustering algorithm (KCA) has been adopted successfully in re-
placing hierarchical slicing. Setodji and Cook (2004) and Yoo et al. (2010) use the KCA to categorize
the multi-dimensional responses, and extended the direct applicability SIR and SAVE to multivariate
regression. The clusters constructed by the KCA play the same role as slices.

For another reason, the KCA has been used in SDR when extracting further information on the
marginal distribution of X. As discussed earlier, SIR and SAVE commonly require the linearity condi-
tion. The condition is for the marginal distribution of X, neither for the conditional distribution of Y|X
or X|Y nor for the joint distribution of X and Y. To relieve the violation of the condition or to capture
more information on the structure of X, the use of KCA has been considered in Li ef al. (2004), Yoo
(2016¢, 2018) and Lee er al. (2019). Within each cluster, the covariance between Y and X (Li, ef al.
2004; Yoo, 2018; Lee et al. 2019) and the mean X (Yoo, 2016c) are computed to restore Syx.

The use of KCA successfully extends the applicability of SDR methodologies to various data.
The KCA, however, has two shortcomings compared to the usual slicing. The first is reproducibility.
Under the same number of slices, the usual slicing always yields the same categorization result, while
the KCA does not. The other is nestness. For example, a response Y € R! is sliced twice into three
and six slices with letting their results be H: (3) and H(é), respectively Then, H (yé) is nested in H(3),
sense that two in H> are perfectly matched with one of H (3)- However, this does not happen for the
KCA. These two propertles of slicing are important, because the information of Syjx are extracted

equally-balanced and the methods provide the same result whenever using the same number of slices.

In clustering, the hierarchical clustering algorithm (HCA) satisfies two properties; in addition,
there is no absolute reason why the KCA alone is applicable in SDR. However, any intensive com-
parison between KCA and HCA has not yet been done in sufficient dimension reduction context up to
date.

This paper investigates how effective the HCA is in sufficient dimension reduction when com-
paring KCA throughout intensive numerical studies. We will consider four popular options (Single,
Complete, Average and Ward’s method) in HCA used when measuring the distance between clusters
to compare KCA. Based on the studies, we will provide a practical guideline about how well the HCA
can compete with KCA and about which option would be better in HCA. This article does not provide
any theoretical comparison between KCA and HCA in sufficient dimension reduction context.

The organization of the paper is as follows. The KCA and HCA are introduced and are discussed
from the view of reproducibility and nestness in Section 2. Also, Section 2 provides introduction of
two existing methods involving KCA and the humble propose of their hierarchical clustering versions.
The following section is devoted to numerical studies. Two real data examples are presented in Section
4. We summarize and conclude the work in Section 5.
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2. Use of clustering in sufficient dimension reduction

2.1. K-means clustering algorithm
2.1.1. Algorithm

The K-means clustering algorithm (KCA) is a technique that sets the number of clusters in advance
and assigns each data to clusters to minimize a measure of dispersion within the cluster. This analysis
divides the sample so that data does not overlap in the predetermined number of clusters. K-means
clustering is a popular clustering method applied to various statistical learning that has certain advan-
tages such as the efficient convergence to local optimum (Hastie ez al., 2008). The algorithm of this is
as follows.

Algorithm of K-means clustering
Step 1. Start the initial cluster with user-selective k.
Step 2. At every step, each observation is reassigned to the nearest cluster.

Step 3. Recompute the center of the cluster where observations are missing and added, and repeat
Step 2.

Step 4. Stop when there is no further movement of observations.

2.1.2. No reproducibility and no nestness

To show that the KCA does not have any of reproducibility and nestness in practice, we consider
the following multivariate regression of Y = 0L yLy)TX = (..., x5) Ty = x% + 0.5e1; y2 =
x1 +0.5&2; y3 = exp(x) + 0.5¢3. All variables of (xy,...,xs,&},...,&3) are randomly generated from
N(0, 1), and the sample size is 100. The regression depends on X only through x;. Therefore, the
one-dimensional column vector (1,0, 0,0,0)T spans Syjx.

First, we clustered the responses to have 2 clusters three times. Then, the number of observations
for each cluster resulted from the three trials were (93, 7), (90, 10), and (90, 10), where (n;, n;) stands
for the number of observations of the first and second clusters. It is observed that the first two results
are not the same. This directly implies that reproducibility is not guaranteed in KCA. Next, the re-
sponses were clustered to have 3 clusters three times. The number of observations for each cluster
were (7,27,606), (76,10, 14), and (19, 74, 7); consequently, we can see that the three results are differ-
ent. This implies that, under the same number of clusters, the multivariate inverse regression methods
by Setodji and Cook (2004) and Yoo et al. (2010) possibly provides different results. However, it is
not clear which result should be used. To investigate no nestness of KCA, the same data was clustered
with 4 clusters one time, and the cluster sizes were (18,7, 8, 67), It is not clearly nested in the results
of (90, 10), but is nested in (93, 7).

Next, the predictors using the same data were clustered following the same way as the response
variables. Then, with 2 clusters, the sizes were (53,47), (58,42) and (56, 44); as well as (38, 33, 29),
(21,28,51) and (26, 40, 34) for 3 clusters. The cluster sizes are all different for each trial and there is no
reproducibility. If the predictors are clustered to have 4 clusters, the resulted sizes are (19, 26, 30, 25)
and do not fall into any of 2 cluster results.

2.2. Hierarchical clustering algorithm

The hierarchical clustering algorithm (HCA) builds a decisive and flexible algorithm for clustering.
The KCA requires a user-defined number of clusters to obtain clustering solutions, and it is difficult to
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define a good choice of the parameter. But the HCA does not need to specify the number of clusters.
The HCA is as follows.

Step 1. Start with n clusters, where n stands for the number of observations.
Step 2. Merged the two nearest observations into one cluster.

Step 3. At every step, the two clusters closest to the distance are merged. This means that single
observations are added to existing clusters or that two existing clusters are merged.

To measure the similarity or distance between two clusters in HCA, single linkage, complete
linkage, average linkage, and Ward’s method are widely used.

o Single linkage: The single linkage is a method of constructing a higher-level cluster by calculat-
ing the distance between observations belonging to each cluster in two clusters and merging two
clusters with the closest of these values. This is also called the nearest neighbor method. Suppose
that there two clusters of U = (xi,...,u,,)and V = (y1,...,y,,). Then, the distance between U and
W is as follows.

dyy =min{x; € U,y; € V: d(x;,y))},
where d(x,y) stands for a measure of distance or similarity between x and y. Here, the usual Eu-
clidean distance has been used.

e Complete linkage: In the compete linkage algorithm, the similarity between two clusters is defined
as the farthest distance between any two observations in a different cluster, unlike single linkage.

dU,V = max{x,- e U, yj € V: d(xi,y.,-)}.

e Average linkage: The average linkage algorithm is the method that uses the average distance
between all pairs of different clusters for the distance between observations in each cluster.

n, b
duy = —— 3" 3 ds v,

i=1 j=n,

o Ward’s method: In the case of single linkage, complete linkage and average linkage all, a cluster
was formed using Euclidean square distances. However, Ward’s method measures the similarity
between two clusters based on the increase in the sum of squares error (ESS) when two clusters
are combined. The reason for using ESS is to consider information loss. When the observations
are grouped together, information about individual observation is replaced by information about
the clusters in which they belong. Ward’s method considers this information loss for combining
two clusters. Suppose there are k clusters at a current stage, and let U, stands for the i cluster for
i=1,...,k The sum of square error for U; is defined: ESS; = Z’;.":l(x?) —)"c(i))(x;’) — T, where x(j')

th

stands for the j observation in the i cluster and X represents the sample mean for the i”* cluster.

Then the total ESS is defined as: ESS = Zle ESS;. With the k clusters existing at the current stage,
combine two clusters for all possible cases. Then, the clustering results with the smallest increase
in ESS is the next stage, in which there are k — 1 clusters.

The result of the HCA is usually reported as dendrogram. If one fixes a measure of distance
between two clusters and do hierarchical clustering, it always produces the same results, because no
randomness is involved in the clustering procedure. The nestness property is guaranteed since the
HCA has a hierarchical structure to combine one cluster at a step that starts from » clusters.
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2.3. Two sulfficient dimension reduction methods involving clustering

2.3.1. Inverse regression method

According to Li (1991), £ 'E(X|Y) € Syx under the linearity condition that E(X|p"X) is linear in
"X, where X = cov(X). So, a subspace spanned by £~! E(X|Y) varying the values of Y is contained
in SYIX'

It is essential to restore E(X|Y) without knowing any parametric condition about X|Y, Y|X or X
and Y. One simple possible route to solve this is a partitioning by Y. Then, E(X]Y) is nothing but
the group mean of X within each partition. This partitioning by Y is called slicing. When Y is multi-
dimensional, the slicing is replaced by the KCA, which is called K-means inverse regression (KIR)
(Setodji and Cook, 2004). Its sample algorithm is as follows.

Step 1. Partition the data by K-means clustering Y to have A clusters. Let Ci stand for the cluster for
k=1,2,...h

Step 2. Make Z; = £ *(X; - X),i=1,2,....n.

Step 3. Compute the sagnple means of ik with_in each cluster for k = 1,...,h, and construct that
MKIR = ((m /n)Zl, (ny /n)Zg, oo, (ny /n)Zh), where n; stands for the size of the k™ cluster.

Step 4. Find the eigenvectors, saying ['y = (§1,...,%(n1/ng)) of corresponding to the first d largest
eigenvalues of MR M.

Step 5. Let#) = i‘._l/zf 4, and S(#)) is the estimate of Syjx.

2.3.2. Clustering mean method

The method KIR requires the linearity condition. If the condition fails, then the kernel matrix produced
by the KIR is not guaranteed to have proper containment of Syjx. According to Li et al. (2004), it is
possible to reach misleading results because nonlinearity among the predictors possibly makes the
performance of most estimation methods worse. Therefore, it is essential to check if the condition
holds for KIR. It is not easy to investigate the existence of unobserved nonlinearity among predictors,
because they appear linear through graphical inspection. To overcome this issue, Yoo (2016c¢) proposes
the clustering mean method. The main purpose of this article is placed on the methods and its sample
implement algorithm is somewhat similar to KIR; therefore, its estimation algorithm is introduced
directly. The usual slicing scheme is used to categorize Y since the clustering mean method (Yoo,
2016c¢) considers univariate response. For more details on the clustering mean method, readers are
recommended to read Yoo (2016c¢).

Step 1. Partition the data by K-means clustering algorithm for X to have #, clusters.

Step 2. Within each cluster, Y is sliced into &, groups. So, the data is totally partitioned into A, X A,
groups. Let Cy(j) denote the partition of the data with the j slice of Y within the i cluster of X
and let n;;, be the size of Cy).

Step 3. Make Z; = £ (X, - X),i=1,2,...,n.
Step 4. Compute the sample means of ii( j within C;jy fori=1,...,hcand j=1,...,h,. Build that

~ na 3 ne) 5 Ni(ny) 5 (1) 53 Nh2) 3 My (hy) 5
Mcem = [(_Zl(l)» —Z2), ..., VAR 7.1, 2., -., Ziy)|-
n n n n n n ;
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Step 5. Find the eigenvectors, saying I’y = (1, ...,%4) of corresponding to the first d largest eigen-
values of MccmM oy
Step 6. Let i) = ﬁ_l/zfd, and S(#)) is the estimate of Sy|x.

2.4. Hclust inverse regression and hierarchical clustering mean method

The goal of this paper is to analyze how HCA can be used in sufficient dimension reduction. So, we
propose Hclust inverse regression (HIR) to estimate Syjx for multivariate regression. The implemen-
tation of HIR is the same as KIR, except to hierarchically-cluster the responses in Step 1 of the KIR
algorithm. Four measures are used to measure distances between clusters in HCA; therefore, sHIR,
cHIR, aHIR and wHIR are acronymically named according to using single, complete and average
linkages and Ward’s method, respectively.

We also distinguish KCA and HCA in the clustering mean method. The KCA method used to
categorize the predictors is called the K-means clustering mean method (KCCM), which is the original
version proposed by Yoo (2016¢). However, it will be called Hierarchical clustering mean method
(HCCM) if the predictors are hierarchically-clustered. The acronyms of sHCCM, cHCCM, aHCCM,
and wHCCM are also defined following the same rationale.

Data generation of Y and X would be different since regression is a study of the conditional
distribution of Y|X. In the regression context, it would be common to think that regression data is
constructed, as if the predictors are sampled first, and then the responses are generated given the
predictors. X is involved for the generation of Y; however, the opposite direction does not hold. This
indicates that different measuring options would be preferred for responses and predictors in the HCA.

3. Numerical studies

For all numerical studies, the sample sizes were 100, and each model was iterated 1000 times. For
all models, the dimension of Syx was one. The correlation coeflicient between nTX and i]TX was
calculated to measure how the central subspace is well-estimated, where # stands for the sample
estimate of 1. As a summary, boxplots for each clustering method were reported along with lining
medians. The single linkage results were omitted since it was the worst in most cases.

3.1. In case of clustering responses

Two models in Setodji and Cook (2004) were studied. And, the dimensions of responses and predictors

were four and five, respectively. So that we have a multivariate regression of Y = (y,..., ) X =
(x1,..., x5)T. The variable configurations were then: (xi, ..., X5,&(,. .., 84)T iid N(0, 1). The number
of clusters considered were 2, 3, ..., 8.

e Model 1. y1 = 1§X+ 0.181;_)12 = |1§X| + 0.182;_)73 = y% + Y2E3; Y4 = &4, where 15 = (1, 1, 1, 1, I)T
In Model 1, the column vector of 7 = 15 span Syjx, and y4 1L X. The coordinate regression of
¥2|X is symmetric at zero. The coordinate regression of y;|X has quadratic mean function and
heteroscedasticity. Therefore, this multivariate regression has quite complex means structure and
heteroscedasticity.

e Model 2. y; = 0.1(1; X)+exp(0.1(17X))&1; y2 = 0.1(1] X)+exp(0.2-0.3(1] X)))&2; y3 = 0.1(1] X)+
exp(0.2(1;X))es; ya = 0.1(17X) + exp(0.1 — 0.1(1; X))&s, where 14 = (1,1,1,1,0)™. For Model 2,
the mean and variance functions depend on X only through 14TX, so the column of n = 14 spans
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Figure 1: Side-by-side boxplots for Model 1; red line, the median of |r|s.

Syjx with d = 1. All coordinate regressions have linear mean and heteroscedasticity as a form of

exponential function of 14TX.

The side-by-side boxplots of the correlation coefficients |r| between 37X and 77X for the two
models are reported in Figures 1 and 2. According to Figures 1 and 2, the three of KIR, wHIR and
cHIR result in equally good estimation performances for all numbers of clusters, although the wHIR
shows better estimation performances with smaller number of clusters than the other two. The estima-
tion results by aHIR are worse than the former two, especially for Model 2. However, the responses
may have unexpected outliers because there exists heteroscedasticity in Model 2 that would affect the
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Figure 2: Side-by-side boxplots for Model 2; red line, the median of |r|s.

average and possibly cause bad clustering results.
From the studies, the wHIR is confirmed to compete KIR successfully, which is recommended as
a default when hierarchically-cluster responses are required in inverse regression methods.

3.2. In case of clustering predictors

We considered the following two models in Yoo (2018). KCCM and HCCM were fitted to the data in
both models to estimate Syjx since the linearity did not hold because the predictors were nonlinear.

e Model 3. Variables (uy, us, uq, us, €, €, &) were independently generated as: u; ~ U(0,1), u, =
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log(uy) + €, € ~ U(=0.5,0.5) and (u3, us, us, &) = NO,1). x| = w1 + uz; X» = ur + g + us;
X3 = U3 — Ug; X4 = Uy X5 = Us. Y|X = (X1, X2, X3, X4, X5)T = log(x; — x3 — x4) + &. In Model 3, a
vector of (1,0,—1,—1,0)T spans Syjx and its structural dimension is one.

o Model 4. (x,...,x5)T  exp(1) L & ~ N(O,1). yIX = (x1,...,x5)T = exp(x; — x2) + 0.5¢. For
Model 4, the central subspace is one-dimensional and is spanned by the vector of (1,-1,0,...,0)T.

Figures 3 and 4 provides the summary plots for Models 3 and 4. According to the figures, the
aHCCM and cHCCM dominate KCCM and wHCCM, which are a different aspect from the clustering
responses. The aHCCM for Model 3 is the best and highly distinguished from the other three. Also,
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Figure 4: Side-by-side boxplots for Model 4; red line, the median of |r|s.

it is observed that the variability in |r|s by aHCCM is smaller than the others. Through the various
numerical studies, the aHCCM is recommended for clustering the predictors in the clustering mean
method. This confirms that the use of HCA can improve the estimation results and provide a more
reliable estimate than KCA.

4. Real data examples: Minneapolis school data and Massachusetts college data

We considered two data sets for illustration purposes. The first example is a multivariate regression
using data regarding the performance of students in n = 63 Minneapolis schools studied by Yoo
(2009). The four dimensional responses Y are the percentage of students in a school scoring above and
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Figure 5: Scatterplot matrices of sufficient predictors.

below average on standardized fourth and sixth grade reading comprehension tests. The following six
predictors were considered: pupil teacher ratio, square roots of percentage of children receiving Aid
to Families with Dependent Children, percentage of children not living with both biological parents,
percentage of adults in the school area who completed high school, and percentage of persons in the
area below the federal poverty level. The predictors were transformed to satisfy the linearity condition.
For this multivariate regression, KIR and wHIR were implemented with 5 clusters.

To see the practical usefulness of hierarchically-clustering predictors Massachusetts college data
were considered introduced in Yoo (2016c). Data was collected to investigate how the percentage
of students graduating were associated with the measures of quality for incoming students and the
features of the colleges. The response represents the percentage of students graduating from Mas-
sachusetts 4-year colleges in 1995. The following seven variables were then used as predictors: per-
centage of freshmen that were among the top 25% percent of their graduating high school class,
median mathematics SAT score, median verbal SAT score, percentage of applicants accepted into col-
lege, percentage of accepted applicants who enroll, student-to-faculty ratio, out-of-state tuition and
whether the college is public or private (with private coded as 1 and 0 otherwise). After eliminating
missing values, 46 observations among total 56 were used for analysis. According to Yoo (2016¢),
the linearity condition fails because there exists non-linearity in predictors. Therefore, KCCM and
aHCCM had better be applied with 8 clusters of (h, = 4, h, = 2).

The two examples were analyzed by the following approach. Both KIR and KCCM were imple-
mented several times to see that different dimension estimation occurred with level 0.05. We then
compared the results with those from wHIR and aHCCM. To gain more information on the dimension
determination, sufficient predictors under the maximum dimension estimate were compared through
scatterplot matrices (Figure 5).

For Minneapolis school data, the KIR determined the dimension of Syjx as one (KIR1) with p-
value 0.067 for Hy : d = 1 or as two (KIR2) with p-values 0.030 for Hy : d = 1 and 0.523 for
Hy : d = 2. However, the wHIR concluded that d = 2 with p-values 0.038 for Hy : d = 1 and 0.677
for Hy : d = 2. Figure 5(a) indicates that the first two sufficient predictors from KIR1-2 and wHIR
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are essentially the same. It is natural to think that the KCA produce bad clustering by chance, which
causes the unexpected underestimation of Syjx; therefore, it is reasonable to decide that d=2.

In case of Massachusetts college data, the KCMM determined that d=3 (KCCM1) with p-values
0.000 for Hy : d = 1, 0.024 for Hy : d = 2 and 0.105 for Hy : d = 3 and d=2 (KCCM2) with
p-values 0.012 for Hy : d = 1 and 0.299 for Hy : d = 2. The aHCCM resulted in d = 2 with p-values
0.014 for Hy : d = 1 and 0.503 for Hy : d = 2. Figure 5(b) indicates that the correlations between the
first two sufficient predictors are very high, while the third sufficient predictors do not have a common
relationships like the first two. This implies that the determination of d = 3 seems to overestimate the
true dimension of Syx.

The two real data examples confirms that the use of HCA has advantage over the KCA in practice.

5. Discussion

Sufficient dimension reduction (SDR) pursues to replace the original p-dimensional predictors with
its lower-dimensional linear projection without information loss on a regression of Y € R"|X € R?,
where r > 1 and p > 2. Two popular methods of inverse regression (Li, 1991; Cook and Weisberg,
1991) and clustering mean method (Yoo, 2016¢) require partitioning data into subgroups. For this, the
K-means clustering algorithm (KCA) has been successfully adopted to partition data into subgroups
by clustering responses and predictors.

However, two deficits for KCA to have in SDR is the lack of reproducibility and nestness. If
reproducibility is not guaranteed, the dimension reduction results will possibly vary, whenever the
same KCA procedure is repeatedly applied. This then causes confusion to practitioners. Nestness
is also important to magnify information within similar subgroups and to accumulate information
between different subgroups.

The hierarchical clustering algorithm (HCA) can overcome deficits; therefore, HCA would be
a potentially good or possible better replacement of KCA in SDR. We propose an Hclust inverse
regression and Hierarchical clustering mean method using HCA. Throughout numerical studies, the
Ward-Hclust inverse regression, which categorize multi-dimensional responses, can compete with or
be better than the existing KIR. The various simulation studies also show the Average-hierarchical
clustering mean method and categorize the predictors that outperform the K-means clustering mean
method.

The use of hierarchical clustering algorithm is therefore confirmed to be beneficiary in SDR liter-
ature.
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