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MUIRHEAD’S AND HOLLAND’S INEQUALITIES OF MIXED

POWER MEANS FOR POSITIVE REAL NUMBERS†

HOSOO LEE AND SEJONG KIM∗

Abstract. We review weighted power means of positive real numbers and
see their properties including the convexity and concavity for weights. We

study the mixed power means of positive real numbers related to majoriza-

tion of weights, which gives us an extension of Muirhead’s inequality. Fur-
thermore, we generalize Holland’s conjecture to the power means.
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1. Introduction

For any vector a = (a1, a2, . . . , an) ∈ Rn the a-mean [a] of nonnegative real
numbers x1, x2, . . . , xn is defined by

[a] =
1

n!

∑
σ

xa1σ(1) · · ·x
an
σ(n),

where the sum is taken over all permutations σ on {1, 2, . . . , n}. For example,

[(1, 0, . . . , 0)] =
1

n

n∑
j=1

xj and [(1/n, 1/n, . . . , 1/n)] =

 n∏
j=1

xj

1/n

are the arithmetic mean and the geometric mean, respectively. One can see
that for any probability vector ω = (w1, w2, . . . , wn) the ω-mean [ω] is a kind
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of mixed means, that is, the arithmetic mean of weighted geometric means of
xσ(1), xσ(2), . . . , xσ(n).

For two vectors a = (a1, a2, . . . , an),b = (b1, b2, . . . , bn) ∈ Rn, we say that b
majorizes a if and only if

k∑
j=1

a↓j ≤
k∑
j=1

b↓j ,

n∑
j=1

a↓j =

n∑
j=1

b↓j ,

for all k = 1, . . . , n − 1, where a↓j and b↓j are the elements of a and b sorted in

decreasing order, respectively. Muirhead’s inequality states in [9] that [a] ≤ [b]
if and only if b majorizes a (see [1, 8] for more details and applications). In
Section 3 we generalize the Muirhead’s inequality to the power means that we
review in Section 2.

F. Holland [2] introduced the following inequality for positive real numbers
x1, x2, . . . , xn, (

n∏
i=1

x1 + · · ·+ xi
i

)n
≤ 1

n

n∑
i=1

(x1 . . . xi)
1/i.

One can see also that each side is a kind of mixed means. That is, the left-hand
side is the geometric mean of inductive arithmetic means of x1, x2, . . . , xn, and
vice versa for the right-hand side. In Section 4 we show the generalization of the
Holland’s inequality extended to power means.

The weighted power mean for positive definite Hermitian matrices are well
defined from the matrix nonlinear equation. Furthermore, the Karcher mean
(also known as the least square mean or Riemannian mean) has been shown as
the limit of the power mean; see [7] for more details and properties. It would be
interesting to show that our results are extended to the weighted power mean of
positive definite matrices, so we discuss it in Section 5.

For convenience, we use the following notation: for any x = (x1, . . . , xn),y =
(y1, . . . , yn) ∈ Rn

x� y := (x1y1, . . . , xnyn) ∈ Rn,
xt := (xt1, . . . , x

t
n) ∈ Rn for any t ∈ R,

xσ := (xσ(1), . . . , xσ(n)) ∈ Rn for any permutation σ on {1, . . . , n},
x6=k := (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1 for some k ∈ {1, . . . , n}.

2. Weighted power means

Let Rn+ = {x = (x1, . . . , xn) ∈ Rn : xj > 0 for all j = 1, . . . , n}. Let
ω = (w1, . . . , wn) be a probability vector; wj ≥ 0 for all j = 1, . . . , n and
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n∑
j=1

wj = 1. For any nonzero number p the weighted power mean of any vector

x = (x1, . . . , xn) ∈ Rn+, also known as the generalized mean or Hölder mean, is
defined by

Fp(ω;x) :=

 n∑
j=1

wjx
p
j

1/p

.

One can see easily that for any vector x = (x1, . . . , xn) ∈ Rn+
Fp(ω;x) = 〈ω,xp〉1/p (1)

for any p 6= 0, where 〈·, ·〉 is the Euclidean inner product in Rn. For ω =
(1/n, . . . , 1/n) we simply denote Fp(x) := Fp(ω;x) for all p.

The weighted arithmetic mean and the weighted harmonic mean are all known
as the special examples of weighted power mean:

F1(ω;x) =

n∑
j=1

wjxj = A(ω;x),

F−1(ω;x) =

 n∑
j=1

wjx
−1
j

−1 = H(ω;x).

The weighted power mean Fp when p = 0 can be defined as its limit as p → 0,
which is the weighted geometric mean. In other words,

F0(ω;x) := lim
p→0

Fp(ω;x) =

n∏
j=1

x
wj

j = G(ω;x).

We list the properties of weighted power means.

Lemma 2.1. Let ω = (w1, . . . , wn) be a probability vector, x,y ∈ Rn+, and
p ∈ R. The following are satisfied.

(P1) Fp(ω;x) = x for x = (x, . . . , x) ∈ Rn+.

(P2) Fp(ω;x� y) = Fp(ω;x)Fp

(
1

〈ω,xp〉
ω � xp;y

)
.

(P3) Fp(ωσ;xσ) = Fp(ω;x) for any permutation σ on {1, . . . , n}.
(P4) Fp(ω;xq)1/q = Fpq(ω;x) for any q 6= 0.

(P5) Fp(ω;x) ≤ Fp(ω;y) if xj ≤ yj for all j = 1, . . . , n.

(P6) Fp(ω;x) ≤ Fq(ω;x) for p ≤ q.
(P7) For any t ∈ [0, 1]

(1− t)Fp(ω;x) + tFp(ω;y) ≤ Fp(ω; (1− t)x + ty) if p ≤ 1,

(1− t)Fp(ω;x) + tFp(ω;y) ≥ Fp(ω; (1− t)x + ty) if p ≥ 1.

(P8) Fp(ω;x) = Fp(w1, . . . , wn−1 + wn;x 6=n) if xn−1 = xn.
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(P9) Fp(ω;x) = Fp

(
1− wn, wn;Fp

(
1

1− wn
ω 6=n;x 6=n

)
, xn

)
.

(P10) Fp(ω; a1, . . . , an−1, x) = x if and only if x = Fp

(
1

1− wn
ω6=n; a1, . . . , an−1

)
,

where all aj ∈ R+.

Remark 2.1. One can see that the idempotency (P1) follows inductively from
(P8), and the homogeneity Fp(ω;αx) = αFp(ω;x) follows from (P2). Further-
more, the arithmetic-geometric-harmonic mean inequality is a special case of
monotonicity for parameters (P6). In other words,

H(ω;x) = F−1(ω;x) ≤ G(ω;x) = F0(ω;x) ≤ A(ω;x) = F1(ω;x).

By using the definition of weighted power means and Lemma 2.1 (P8) we
have

Lemma 2.2. Let ω = (w1, . . . , wm) and µ(i) = (µ
(i)
1 , . . . , µ

(i)
n ) be probability

vectors for i = 1, . . . ,m. For any vectors x(i) = (x
(i)
1 , . . . , x

(i)
n ) in Rn+,

Fp(ω;Fp(µ
(1);x(1)), . . . , Fp(µ

(m);x(m)))

= Fp((w1µ
(1)
1 , . . . , w1µ

(1)
n , . . . , wnµ

(m)
1 , . . . , wnµ

(m)
n ); (x

(1)
1 , . . . , x(1)n , . . . , x

(m)
1 , . . . , x(m)

n )).

In particular,

Fp(ω;Fp(µ
(1);x), . . . , Fp(µ

(m);x)) = Fp

((
m∑
k=1

wkµ
(k)
1 , . . . ,

m∑
k=1

wkµ
(k)
n

)
;x

)
.

In Lemma 2.1 (P7) we have seen the joint concavity and convexity of weighted
power means for variables: for any t ∈ [0, 1] and x,y ∈ Rn+

(1− t)Fp(ω;x) + tFp(ω;y) ≤ Fp(ω; (1− t)x + ty) if p ≤ 1,

(1− t)Fp(ω;x) + tFp(ω;y) ≥ Fp(ω; (1− t)x + ty) if p ≥ 1.

We show the joint concavity and convexity of weighted power means for weights.

Proposition 2.3. Let ω, µ be probability vectors, t ∈ [0, 1] and x ∈ Rn+. Then

Fp((1− t)ω + tµ;x) ≤ (1− t)Fp(ω;x) + tFp(µ;x) for p ≤ 1,

Fp((1− t)ω + tµ;x) ≥ (1− t)Fp(ω;x) + tFp(µ;x) for p ≥ 1.

Proof. If p( 6= 0) ≤ 1 it is enough to show that

Fp

(
ω + µ

2
;x

)
≤ Fp(ω;x) + Fp(µ;x)

2
,

since the map ω 7→ Fp(ω;x) is continuous. By the fact that the real-valued
function f(x) = xr for r ≥ 1 or r < 0 is convex, we obtain〈

ω + µ

2
,xp
〉1/p

=

[
〈ω,xp〉+ 〈µ,xp〉

2

]1/p
≤ 〈ω,x

p〉1/p + 〈µ,xp〉1/p

2
.

If p = 0 we can prove it by taking the limit as p→ 0 in the inequality.
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The second inequality for the case of p ≥ 1 is proved for the concavity of the
real-valued function f(x) = xr for 0 < r ≤ 1. �

3. Mixed power means with majorization of weights

In this section we investigate the properties of mixed weighted power means
related to a majorization of weights. We see that our result is a generalization
of Muirhead’s inequality.

Let ω = (w1, . . . , wn) and µ = (µ1, . . . , µn) be probability vectors. We say
that µ majorizes ω (or ω is majorized by µ), denoted by ω ≺ µ, if and only if

k∑
j=1

w↓j ≤
k∑
j=1

µ↓j

for all k = 1, . . . , n− 1, where w↓j and µ↓j are the elements of ω and µ sorted in

decreasing order, respectively. One can easily see that

n∑
j=1

w↓j = 1 =

n∑
j=1

µ↓j .

We have the useful characterization of majorization for probability vectors
modified from [3, Theorem 4.3.33].

Lemma 3.1. Let ω and µ be probability vectors. Then the following are equiv-
alent.

(a) µ majorizes ω.
(b) There exists a probability vector (c1, . . . , cn!) such that

ω =

n!∑
k=1

ckµτk , (2)

where τk are permutations on {1, . . . , n} for k = 1, . . . , n!.

We see how the majorization of weights is related to the mixed power means.

Lemma 3.2. Let ω and µ be probability vectors such that ω ≺ µ. Let σi be
distinct permutations on {1, . . . , n}, where i = 1, . . . , n!. For any y ∈ Rn+,

(1) Fr(A(ω;yσ1), . . . ,A(ω;yσn!
)) ≤ Fr(A(µ;yσ1), . . . ,A(µ;yσn!

)) if r ≥ 1,
(2) Fr(A(ω;yσ1), . . . ,A(ω;yσn!

)) ≥ Fr(A(µ;yσ1), . . . ,A(µ;yσn!
)) if r ≤ 1.

Proof. Note that f(x) = xr is convex for r ∈ (−∞, 0) ∪ [1,∞) and concave for
r ∈ (0, 1], respectively. So we have

〈ω,yσj
〉r =

〈
n!∑
k=1

ckµτk ,yσj

〉r
≤

n!∑
k=1

ck〈µτk ,yσj
〉r, r ∈ (−∞, 0) ∪ [1,∞),

〈ω,yσj
〉r =

〈
n!∑
k=1

ckµτk ,yσj

〉r
≥

n!∑
k=1

ck〈µτk ,yσj
〉r, r ∈ (0, 1],
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where ω =

n!∑
k=1

ckµτk for some probability vector (c1, . . . , cn!) and permutations

τ1, . . . , τn! as in Lemma 3.1. Then n!∑
j=1

1

n!
〈ω,yσj 〉r

1/r

≤

 n!∑
j=1

1

n!

n!∑
k=1

ck〈µτk ,yσj 〉r
1/r

, r ∈ [1,∞),

 n!∑
j=1

1

n!
〈ω,yσj

〉r
1/r

≥

 n!∑
j=1

1

n!

n!∑
k=1

ck〈µτk ,yσj
〉r
1/r

, r ∈ (−∞, 0) ∪ (0, 1].

Here, we have

n!∑
j=1

1

n!

n!∑
k=1

ck〈µτk ,yσj 〉r =

n!∑
k=1

ck

n!∑
j=1

1

n!
〈µτk ,yσj 〉r

=

n!∑
k=1

ck

n!∑
j=1

1

n!
〈µ,yσjτ

−1
k
〉r

=

n!∑
k=1

ck

n!∑
j=1

1

n!
〈µ,yσj

〉r

=

n!∑
j=1

1

n!
〈µ,yσj

〉r.

The third equality follows from the fact that {σjτ : j = 1, . . . , n!} = {σj : j =
1, . . . , n!} for any fixed permutation τ on {1, . . . , n}.

For r = 0, we take the limit of the second inequality as r → 0. Thus, we
proved. �

Theorem 3.3. Let ω and µ be probability vectors such that ω ≺ µ. Let σi be
distinct permutations on {1, . . . , n}, where i = 1, . . . , n!. For any x ∈ Rn+ and
p ≤ q,

(1) Fq(Fp(ω;xσ1
), . . . , Fp(ω;xσn!

)) ≤ Fq(Fp(µ;xσ1
), . . . , Fp(µ;xσn!

)),
(2) Fp(Fq(ω;xσ1), . . . , Fq(ω;xσn!

)) ≥ Fp(Fq(µ;xσ1), . . . , Fq(µ;xσn!
)).

Proof. We first prove them for 0 < p ≤ q (p < 0 < q, respectively). For 0 < p ≤ q
(p < 0 < q, respectively), (1) is equivalent that[

n!∑
k=1

1

n!
〈ω,xpσk

〉q/p
]p/q

≤
(≥)

[
n!∑
k=1

1

n!
〈µ,xpσk

〉q/p
]p/q

.

Replacing xp by y and q/p by r ≥ 1 (r < 0, respectively), it is equivalent that[
n!∑
k=1

1

n!
〈ω,yσk

〉r
]1/r

≤
(≥)

[
n!∑
k=1

1

n!
〈µ,yσk

〉r
]1/r
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which is proved by Lemma 3.2. Similarly, (2) is proved for 0 < p ≤ q (p < 0 < q,
respectively).

For p ≤ q < 0,

Fq(Fp(ω;xσ1
), . . . , Fp(ω;xσn!

)) = F−q(F−p(ω;x−1σ1
), . . . , F−p(ω;x−1σn!

))−1

≤ F−q(F−p(µ;x−1σ1
), . . . , F−p(µ;x−1σn!

))−1

= Fq(Fp(µ;xσ1), . . . , Fp(µ;xσn!
)).

The inequality follows from (2) for 0 < −q ≤ −p. Similarly, (2) is proved for
p ≤ q < 0.

For p = 0 or q = 0 we take the limit of the inequalities (1) and (2) as p → 0
or q → 0. Thus, we proved. �

Corollary 3.4. Let ω be any probability vector, and x ∈ Rn+. Let σi be distinct
permutations on {1, . . . , n}, where i = 1, . . . , n!. For any p ≤ q

Fp(x) ≤ Fq(Fp(ω;xσ1), . . . , Fp(ω;xσn!
)) ≤ Fq(x),

Fp(x) ≤ Fp(Fq(ω;xσ1
), . . . , Fq(ω;xσn!

)) ≤ Fq(x).
(3)

Proof. Note that ν = (1/n, 1/n, . . . , 1/n) ≺ ω ≺ µ = (1, 0, . . . , 0) for any proba-
bility vector ω. We further have

Fq(Fp(ν;xσ1), . . . , Fp(ν;xσn!
)) = Fq(Fp(x), . . . , Fp(x)) = Fp(x)

by Lemma 2.1 (P1), and

Fq(Fp(µ;xσ1), . . . , Fp(µ;xσn!
))

= Fq(1/n!, . . . , 1/n!;x1, . . . , x1, . . . , xn, . . . , xn) = Fq(x)

by Lemma 2.1 (P8). Therefore, by Theorem 3.3

Fp(x) = Fq(Fp(ν;xσ1), . . . , Fp(ν;xσn!
))

≤ Fq(Fp(ω;xσ1
), . . . , Fp(ω;xσn!

))

≤ Fq(Fp(µ;xσ1
), . . . , Fp(µ;xσn!

)) = Fq(x).

Similarly, we obtain

Fp(x) = Fp(Fq(µ;xσ1
), . . . , Fq(µ;xσn!

))

≤ Fp(Fq(ω;xσ1), . . . , Fq(ω;xσn!
))

≤ Fp(Fq(ν;xσ1), . . . , Fq(ν;xσn!
)) = Fq(x).

�

Remark 3.1. Let p = 0 < q = 1. Then Theorem 3.3 (1) gives us

A(G(ω;xσ1
), . . . ,G(ω;xσn!

)) ≤ A(G(µ;xσ1
), . . . ,G(µ;xσn!

)) (4)

if µ majorizes ω. This is the Muirhead’s inequality [9], and so Theorem 3.3 is
its generalization to the weighted power means.
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4. Holland’s conjecture extended to power means

F. Holland presented in [2] a conjecture: For any positive real numbers
x1, x2, . . . , xn, the following inequality holds:(

n∏
i=1

x1 + · · ·+ xi
i

)n
≤ 1

n

n∑
i=1

(x1 . . . xi)
1/i. (5)

K. Kedlaya [5] has given a proof of (5). In this section we consider the Holland’s
conjecture extended to power means: For nonzero numbers p ≤ q,

Fp,q(x1, . . . , xn) ≥ Fq,p(x1, . . . , xn), (6)

in which

Fp,q(x1, . . . , xn) = Fp (x1, Fq(x1, x2), . . . , Fq(x1, x2, . . . , xn))

=

 n∑
j=1

1

n

(
xq1 + xq2 + · · ·+ xqj

j

) p
q

 1
p

.

We introduce the following lemma from [5] which is useful for our results.

Lemma 4.1. The vector a(i, j) = (a1(i, j), a2(i, j), . . . , an(i, j)) given by

ak(i, j) =

(
n− i
j − k

)(
j − 1
k − 1

)/( n− 1
j − 1

)
=

(n− i)!(n− j)!(i− 1)!(j − 1)!

(n− 1)!(k − 1)!(n− i− j + k)!(i− k)!(j − k)!

for i, j = 1, 2, . . . , n satisfies the following.

(1) ak(i, j) ≥ 0 for all i, j, k.
(2) ak(i, j) = 0 for all k > min{i, j}.
(3) ak(i, j) = ak(j, i) for all i, j, k.

(4)

n∑
k=1

ak(i, j) = 1 for all i, j.

(5)

n∑
i=1

ak(i, j) =

{
n/j for k ≤ j,
0 for k > j.

From Lemma 4.1 (1) and (4), one can see that a(i, j) is a probability vector.
We also state the following inequalities due to Minkowski (see [1], p. 31).

Lemma 4.2. Let xij be positive real numbers for i = 1, . . . , n and j = 1, . . . ,m.
Then

m∑
j=1

(
n∑
i=1

xpij

)1/p

≥

 n∑
i=1

 m∑
j=1

xij

p1/p

if p ∈ [1,∞), (7)
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m∑
j=1

(
n∑
i=1

xpij

)1/p

≤

 n∑
i=1

 m∑
j=1

xij

p1/p

if p ∈ (−∞, 0) ∪ (0, 1]. (8)

The equalities hold if and only if p = 1 or the vectors x1,x2, . . . ,xn are propor-
tional, where xi = (xi1, xi2, . . . , xim).

Proposition 4.3. Let x1, . . . , xn ∈ R+. Then we have

Fp,1(x1, . . . , xn) ≤ F1,p(x1, . . . , xn) if p ∈ [1,∞), (9)

Fp,1(x1, . . . , xn) ≥ F1,p(x1, . . . , xn) if p ∈ (−∞, 1]. (10)

Proof. We denote A(i, j) = A(ω;x1, . . . , xn), Fp(i, j) = Fp(ω;x1, . . . , xn) the
weighted arithmetic and power means obtained by setting ω = a(i, j), respec-
tively. Note that A(i, j) = F1(i, j).

We first prove the case of p ≥ 1. Using properties (2), (5) in Lemma 4.1 and
the fact that A(i, j) ≤ Fp(i, j) for p > 1 from Lemma 2.1 (P6), we have

x1 + x2 + · · ·+ xj
j

=
1

n

n∑
k=1

(
n∑
i=1

ak(i, j)

)
xk =

1

n

n∑
i=1

A(i, j) ≤ 1

n

n∑
i=1

Fp(i, j).

Taking the power mean Fp on both sides over j and Lemma 2.1 (P5) yield

Fp,1(x1, . . . , xn) =

 n∑
j=1

1

n

(
x1 + · · ·+ xj

j

)p1/p

≤

 n∑
j=1

1

n

(
n∑
i=1

1

n
Fp(i, j)

)p1/p

.

By (7), we obtain n∑
j=1

1

n

(
n∑
i=1

1

n
Fp(i, j)

)p1/p

≤ 1

n

n∑
i=1

 1

n

n∑
j=1

Fp(i, j)
p

1/p

.

Furthermore, by Lemma 4.1 (3) and (5),

1

n

n∑
i=1

 1

n

n∑
j=1

Fp(i, j)
p

1/p

=
1

n

n∑
i=1

 1

n

n∑
j=1

n∑
k=1

ak(i, j)xpk

1/p

=
1

n

n∑
i=1

 n∑
k=1

xpk
n

n∑
j=1

ak(i, j)

1/p

=
1

n

n∑
i=1

(
xp1 + · · ·+ xpi

i

)1/p

= F1,p(x1, . . . , xn).

The proof for p ∈ (−∞, 0)∪(0, 1] follows the same lines as the proof for p ≥ 1,
except that another Minkowski inequality (8) is applied instead. For p = 0 we
take the limit of the inequality (10) as p→ 0. �
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Theorem 4.4. Let x1, . . . , xn ∈ R+. For p ≤ q, we have

Fp,q(x1, . . . , xn) ≥ Fq,p(x1, . . . , xn). (11)

Proof. We first prove the case for q > 0. Replacing xi by xpi and p by q/p in
Proposition 4.3, we have

n∑
j=1

1

n

(
xq1 + · · ·+ xqj

j

)p/q
≥

 n∑
j=1

1

n

(
xp1 + · · ·+ xpj

j

)q/pp/q

for 0 < p ≤ q,

n∑
j=1

1

n

(
xq1 + · · ·+ xqj

j

)p/q
≤

 n∑
j=1

1

n

(
xp1 + · · ·+ xpj

j

)q/pp/q

for p < 0 < q.

These inequalities are equivalent with (11).
For p ≤ q < 0, the inequality (11) for 0 < −q ≤ −p and Fp,q(x) =

F−p,−q(x
−1)−1 from Lemma 2.1 (P4) imply

Fp,q(x) = F−p,−q(x
−1)−1 ≥ F−q,−p(x−1)−1 = Fq,p(x). (12)

For p = 0 or q = 0 we take the limit of the inequalities (11) and (12) as p→ 0
or q → 0. �

Remark 4.1. Holland’s conjecture states that for any positive real numbers
x1, x2, . . . , xn, the following inequality holds:

F0,1(x1, . . . , xn) ≤ F1,0(x1, . . . , xn).

We can see that Theorem 4.4 is a generalization of the above inequality, since

Fp,q(x1, . . . , xn) ≥ Fq,p(x1, . . . , xn)

holds also for p = 0 < 1 = q.

5. Further Research

For the n-tuple A = (A1, . . . , An) of positive definite matrices and p 6= 0 one
might consider  n∑

j=1

wjA
p
j

1/p

as the weighted matrix power mean from the same definition of weighted power
mean for positive real numbers, however, it does not satisfy the monotonicity
for variables. Y. Lim and M. Pálfia have suggested in [7] a successful definition
of the weighted matrix power mean Fp(ω;A1, . . . , An) such as a unique positive
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definite solution X > 0 of the nonlinear matrix equation

X =

n∑
j=1

wjX#pAj , if p ∈ (0, 1],

X =

 n∑
j=1

wjX
−1#−pA

−1
j

 , if p ∈ [−1, 0),

(13)

where A#pB = A1/2(A−1/2BA−1/2)pA1/2 is the weighted geometric mean. Fur-
thermore, it has been shown that the limit of the matrix power mean as p→ 0
is the Karcher mean (also known as the least square mean or Riemannian mean)

arg min
X>0

n∑
j=1

wjδ(X,Aj)
2, (14)

where δ is the Riemannian trace distance. See [4, 6, 10] for more information
and related properties of the Karcher mean.

It would be interesting to see that our results can be extended to the weighted
matrix power means. For instance, the following could be considered for 0 <
p ≤ q ≤ 1.

(1) If ω ≺ µ,

Fq(Fp(ω;Aσ1), . . . , Fp(ω;Aσn!
)) ≤ Fq(Fp(µ;Aσ1), . . . , Fp(µ;Aσn!

)),

Fp(Fq(ω;Aσ1
), . . . , Fq(ω;Aσn!

)) ≥ Fp(Fq(µ;Aσ1
), . . . , Fq(µ;Aσn!

)).

(2) Fp,q(A1, . . . , An) ≥ Fq,p(A1, . . . , An).
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