Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- G.H. Hardy, J.E. Littlewood, G. Plya: Inequalities. Cambridge University Press, Cambridge 1934.
- F. Holland, On a mixed arithmetic-mean, geometric-mean inequality, Mathematics Competitions 5 (1992), 60-64.
- R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
- H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541. https://doi.org/10.1002/cpa.3160300502
- K. Kedlaya, Proof of a mixed arithmetic-mean, geometric mean inequality, Amer. Math. Monthly 101 (1994) 355357.
- J. Lawson and Y. Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc. Series B, Vol. 1 (2014), 1-22.
- Y. Lim and M. Palfia, Matrix power means and the Karcher mean, J. Funct. Anal. 262 (2012), no. 4, 1498-1514. https://doi.org/10.1016/j.jfa.2011.11.012
- A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Application, New York, Academic Press, 1979.
- R.F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters, Proceedings of the Edinburgh Mathematical Society, 21 (1903), 144-157.
- J. Park and S. Kim, Remarks on convergence of inductive means, J. Appl. Math. & Informatics, 34 (2016), No. 3-4, 285-294. https://doi.org/10.14317/jami.2016.28