• 제목/요약/키워드: k-error linear complexity

검색결과 61건 처리시간 0.023초

Quasi-Cyclic Low Density Panty Check 복호기의 다양한 설계 관점에 대한 성능분석 (Performance Analysis on Various Design Issues of Quasi-Cyclic Low Density Parity Check Decoder)

  • 정수경;박태근
    • 대한전자공학회논문지SD
    • /
    • 제46권11호
    • /
    • pp.92-100
    • /
    • 2009
  • 본 논문은 LLR-BP 복호 알고리즘을 사용하는 LDPC 복호기의 하드웨어 구조 분석하고 효율적인 복호기의 설계 방법들을 제시하였다. 또한 설계 시 복호 성능 및 하드웨어 복잡도에 영향을 미칠 수 있는 다양한 설계 이슈들을 제시하고 복호 성능의 변화를 모의실험을 통하여 분석하였다. 오류확률을 전달하는 메시지의 양자화는 정수부 3비트, 소수부 4비트를 할당하였고, 복호 성능이 저하되지 않도록 사전정보에 정수부 2비트, 소수부 4비트를 할당하였으며 LUT로 구현되는 $\Psi$(x) 함수를 조합회로인 PWL 블록으로 대체하여 하드웨어 구조의 개선에 대해 논의하였다. 복호 시간을 단축하기 위하여 중첩 스케줄링을 적용하고, 각 복호기 구조 및 설계 변수들의 제한에 따른 하드웨어 자원을 비교함으로써, 하드웨어 복잡도를 분석하였다.

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • 한국통신학회논문지
    • /
    • 제37권3A호
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

Complex radial basis function network을 이용한 비선형 디지털 위성 통신 채널의 등화 (Equalizationof nonlinear digital satellite communicatio channels using a complex radial basis function network)

  • 신요안;윤병문;임영선
    • 한국통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.2456-2469
    • /
    • 1996
  • A digital satellite communication channel has a nonlinearity with memory due to saturation characeristis of the high poer amplifier in the satellite and transmitter/receiver linear filter used in the overall system. In this paper, we propose a complex radial basis function network(CRBFN) based adaptive equalizer for compensation of nonlinearities in digital satellite communication channels. The proposed CRBFN untilizes a complex-valued hybrid learning algorithm of k-means clustering and LMS(least mean sequare) algorithm that is an extension of Moody Darken's algorithm for real-valued data. We evaluate performance of CRBFN in terms of symbol error rates and mean squared errors nder various noise conditions for 4-PSK(phase shift keying) digital modulation schemes and compare with those of comples pth order inverse adaptive Volterra filter. The computer simulation results show that the proposed CRBFN ehibits good equalization, low computational complexity and fast learning capabilities.

  • PDF

Low-Complexity Distributed Algorithms for Uplink CoMP in Heterogeneous LTE Networks

  • Annavajjala, Ramesh
    • Journal of Communications and Networks
    • /
    • 제18권2호
    • /
    • pp.150-161
    • /
    • 2016
  • Coordinated multi-point transmission (CoMP) techniques are being touted as enabling technologies for interference mitigation in next generation heterogeneous wireless networks (HetNets). In this paper, we present a comparative performance study of uplink (UL) CoMP algorithms for the 3GPP LTE HetNets. Focusing on a distributed and functionally-split architecture, we consider six distinct UL-CoMP algorithms: 1. Joint reception in the frequency-domain (JRFD) 2. Two-stage equalization (TSEQ) 3. Log-likelihood ratio exchange (LLR-E) 4. Symmetric TSEQ (S-TSEQ) 5. Transport block selection diversity (TBSD) 6. Coordinated scheduling with adaptive interference mitigation (CS-AIM) where JRFD, TSEQ, S-TSEQ, TBSD and CS-AIM are our main contributions in this paper, and quantify their relative performances via the post-processing signal-to-interference-plus-noise ratio distributions.We also compare the CoMP-specific front-haul rate requirements for all the schemes considered in this paper. Our results indicate that, with a linear minimum mean-square error receiver, the JRFD and TSEQ have identical performances, whereas S-TSEQ relaxes the front-haul latency requirements while approaching the performance of TSEQ. Furthermore, in a HetNet environment, we find that CS-AIM provides an attractive alternative to TBSD and LLR-E with a significantly reduced CoMP-specific front-haul rate requirement.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

A Trellis-based Technique for Blind Channel Estimation and Equalization

  • Cao, Lei;Chen, Chang-Wen;Orlik, Philip;Zhang, Jinyun;Gu, Daqing
    • Journal of Communications and Networks
    • /
    • 제6권1호
    • /
    • pp.19-25
    • /
    • 2004
  • In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.

MMSE Transmit Optimization for Multiuser Multiple-Input Single-Output Broadcasting Channels in Cognitive Radio Networks

  • Cao, Huijin;Lu, Yanhui;Cai, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2120-2133
    • /
    • 2013
  • In this paper, we address the problem of linear minimum mean-squared error (MMSE) transmitter design for the cognitive radio (CR) multi-user multiple-input single-output (MU-MISO) broadcasting channel (BC), where the cognitive users are subject to not only a sum power constraint, but also a interference power constraint. Evidently, this multi-constraint problem renders it difficult to solve. To overcome this difficulty, we firstly transform it into its equivalent formulation with a single constraint. Then by utilizing BC-MAC duality, the problem of BC transmitter design can be solved by focusing on a dual MAC problem, which is easier to deal with due to its convexity property. Finally we propose an efficient two-level iterative algorithm to search the optimal solution. Our simulation results are provided to corroborate the effectiveness of the proposed algorithm and show that this proposed CR MMSE-based scheme achieves a suboptimal sum-rate performance compared to the optimal DPC-based algorithm with less computational complexity.

2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정 (DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method)

  • 이강인;강원준;양훈기;정원주;김종만;정용식
    • 한국전자파학회논문지
    • /
    • 제25권7호
    • /
    • pp.782-790
    • /
    • 2014
  • 본 논문에서는 바이스태틱 MIMO(Multi-Input Multi-Output) 레이더 시스템에서 다중 신호의 DOA(Direction of Arrival)의 추정을 위한 2차원 Matrix Pencil Method(MPM) 기반 알고리즘을 제안하였다. 2차원 MPM은 낮은 SNR 환경에서도 기존 알고리즘에 비해 적은 연산량으로 다수의 DOA 추정이 가능하고, 송신기에서의 표적 각도인 DOD(Direction of Departure)도 동시 추정이 가능하다. 본 알고리즘의 성능을 확인하기 위해 등간격 선형 배열구조의 MIMO 레이더 시스템에서 SNR에 따른 DOA 및 DOD의 RMSE(Root Mean Square Error)를 확인하였고, 2차원 Capon 기법과 비교하였다.

제조업의 인적오류 관련 사고분석을 위한 HFACS-K의 개발 및 사례연구 (HFACS-K: A Method for Analyzing Human Error-Related Accidents in Manufacturing Systems: Development and Case Study)

  • 임재근;최종덕;강태원;김병철;함동한
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.64-73
    • /
    • 2020
  • As Korean government and safety-related organizations make continuous efforts to reduce the number of industrial accidents, accident rate has steadily declined since 2010, thereby recording 0.48% in 2017. However, the number of fatalities due to industrial accidents was 1,987 in 2017, which means that more efforts should be made to reduce the number of industrial accidents. As an essential activity for enhancing the system safety, accident analysis can be effectively used for reducing the number of industrial accidents. Accident analysis aims to understand the process of an accident scenario and to identify the plausible causes of the accident. Accident analysis offers useful information for developing measures for preventing the recurrence of an accident or its similar accidents. However, it seems that the current practice of accident analysis in Korean manufacturing companies takes a simplistic accident model, which is based on a linear and deterministic cause-effect relation. Considering the actual complexities underlying accidents, this would be problematic; it could be more significant in the case of human error-related accidents. Accordingly, it is necessary to use a more elaborated accident model for addressing the complexity and nature of human-error related accidents more systematically. Regarding this, HFACS(Human Factors Analysis and Classification System) can be a viable accident analysis method. It is based on the Swiss cheese model and offers a range of causal factors of a human error-related accident, some of which can be judged as the plausible causes of an accident. HFACS has been widely used in several work domains(e.g. aviation and rail industry) and can be effectively used in Korean industries. However, as HFACS was originally developed in aviation industry, the taxonomy of causal factors may not be easily applied to accidents in Korean industries, particularly manufacturing companies. In addition, the typical characteristics of Korean industries need to be reflected as well. With this issue in mind, we developed HFACS-K as a method for analyzing accidents happening in Korean industries. This paper reports the process of developing HFACS-K, the structure and contents of HFACS-K, and a case study for demonstrating its usefulness.

Several systems for 1Giga bit Modem

  • Park, Jin-Sung;Kang, Seong-Ho;Eom, Ki-Whan;Sosuke, Onodera;Yoichi, Sato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1749-1753
    • /
    • 2003
  • We proposed several systems for 1Giga bit Modem. The first, Binary ASK(Amplitude Shift Keying) system has a high speed shutter transmitter and no IF(Intermediate Frequency) receiver only by symbol synchronization. The advantage of proposed system is that circuitry is very simple without IF process. The disadvantage of proposed system are that line spectrum occurs interference to other channels, and enhancement to 4-level system is impossible due to its large SNR degradation. The second, Binary phase modulation system has a high speed shutter transmitter and IF-VCO(IF-Voltage Controlled Oscillator) control by base-band phase rotation. Polarity of shutter window is changed by the binary data. The window should be narrow same as above ASK. The advantage of proposed system is which error rate performance is superior. The disadvantage of proposed system are that Circuitry is more complex, narrow pull-in range of receiver caused by VCO and spectrum divergence by the non-linear amplifier. The third, 4-QAM(Quadrature Amplitude Modulation)system has a nyquist pulse transmitter and IF-VCO control by symbol clock. The advantage of proposed system are that signal frequency band is a half of 1GHz, reliable pull-in of VCO and possibility of double speed transmission(2Gbps) by keeping 1GHz frequency-band. The disadvantage of proposed system are that circuit complexity of pulse shaping and spectrum divergence by the non-linear amplifier.

  • PDF