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Abstract 
Building an accurate 3-D spatial road network model has become 
an active area of research now-a-days that profess to be a new 
paradigm in developing Smart roads and intelligent 
transportation system (ITS) which will help the public and 
private road impresario for better road mobility and eco-routing 
so that better road traffic, less carbon emission and road safety 
may be ensured. Dealing with such a large scale 3-D road 
network data poses challenges in getting accurate elevation 
information of a road network to better estimate the CO2 
emission and accurate routing for the vehicles in Internet of 
Vehicle (IoV) scenario. Clustering and regression techniques are 
found suitable in discovering the missing elevation information 
in 3-D spatial road network dataset for some points in the road 
network which is envisaged of helping the public a better eco-
routing experience. Further, recently Explainable Artificial 
Intelligence (xAI) draws attention of the researchers to better 
interprete, transparent and comprehensible, thus enabling to 
design efficient choice based models choices depending upon 
users requirements. The 3-D road network dataset, comprising of 
spatial attributes (longitude, latitude, altitude) of North Jutland, 
Denmark, collected from publicly available UCI repositories is 
preprocessed through feature engineering and scaling to ensure 
optimal accuracy for clustering and regression tasks. K-Means 
clustering and regression using Support Vector Machine (SVM) 
with radial basis function (RBF) kernel are employed for 3-D 
road network analysis. Silhouette scores and number of clusters 
are chosen for measuring cluster quality whereas error metric 
such as MAE ( Mean Absolute Error) and RMSE (Root Mean 
Square Error) are considered for evaluating the regression 
method. To have better interpretability of the Clustering and 
regression models, SHAP (Shapley Additive Explanations), a 
powerful xAI technique is employed in this research. From 
extensive experiments , it is observed that SHAP analysis 
validated the importance of latitude and altitude in predicting 
longitude, particularly in the four-cluster setup, providing critical 
insights into model behavior and feature contributions SHAP 
analysis validated the importance of latitude and altitude in 
predicting longitude, particularly in the four-cluster setup, 
providing critical insights into model behavior and feature 
contributions with an accuracy of 97.22% and strong 
performance metrics across all classes having MAE of 0.0346, 
and MSE of 0.0018. On the other hand, the ten-cluster setup, 
while faster in SHAP analysis, presented challenges in 
interpretability due to increased clustering complexity. Hence, K-
Means clustering with K=4 and SVM hybrid models 
demonstrated superior performance and interpretability, 
highlighting the importance of careful cluster selection to balance 
model complexity and predictive accuracy. 
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1.  Introduction 
 

Clustering and interpretability of complex datasets 
are critical tasks in contemporary data science, especially 
when dealing with multidimensional and high-volume data. 
In particular, the analysis of 3D road network data poses 
unique challenges due to its spatial and temporal 
complexity. This paper focuses on addressing these 
challenges through a comprehensive methodology that 
integrates advanced clustering techniques, model 
interpretability methods, and dimensionality reduction 
strategies. The study aims to enhance the understanding of 
clustering patterns and the underlying factors influencing 
these patterns in 3D spatial datasets, with implications for 
improving decision-making and operational efficiencies in 
various domains, including urban planning and 
transportation management. Road network analysis is a 
vital aspect of geographical and urban studies, where 
understanding the spatial distribution and patterns of road 
networks can inform infrastructure development and safety 
measures. The dataset utilized in this study comprises 3D 
coordinates (longitude, latitude, altitude) from North 
Jutland, Denmark. Given the multidimensional nature of 
this data, the challenge lies in effectively clustering the 
data to reveal meaningful patterns and in interpreting the 
results to derive actionable insights. Traditional clustering 
techniques, while useful, may not fully capture the 
intricate relationships within such datasets. Thus, there is a 
need for advanced methodologies that not only perform 
effective clustering but also provide insights into the 
factors driving these cluster formations.  

To address this, the study employs K-Means 
clustering, a widely used algorithm known for its 
simplicity and effectiveness in partitioning datasets into 
distinct clusters based on feature similarity. The selection 
of the optimal number of clusters is determined using the 
Elbow Method, which helps in identifying the point where 
the addition of more clusters ceases to provide significant 
improvements in the clustering performance. Further 
validation of the clustering quality is conducted through 
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the silhouette score, which measures how similar an object 
is to its own cluster compared to other clusters. This 
approach ensures that the resulting clusters are both 
meaningful and well-defined. In conjunction with 
clustering, the study utilizes Random Forest Classifier to 
analyze the importance of different features in the 
clustering process. Random Forest, an ensemble learning 
method known for its robustness and ability to handle 
large datasets, provides insights into which features—
longitude, latitude, or altitude are most influential in 
determining cluster memberships. Preliminary results 
reveal that longitude is the most significant feature, 
offering valuable information for further analysis and 
interpretation.  

To enhance the interpretability of the regression 
and classification results from clustering, explainable AI 
(xAI) using SHAP (SHapley Additive exPlanations) is 
employed. SHAP is a powerful tool that explains 
individual predictions made by machine learning models 
by attributing the output to each feature's contribution. 
This method provides a transparent view of how different 
features affect the regression outcomes and the 
classification performance within clusters, facilitating a 
deeper understanding of the data's underlying structure. 
Various SHAP visualizations, including summary plots, 
force plots, waterfall plots, and bar plots, are generated to 
illustrate the impact of each feature on the model 
predictions. These visualizations are crucial for identifying 
key factors driving the predictive patterns and for 
validating the robustness of the models. In the context of 
3D road network data, SHAP analysis highlighted latitude 
and altitude as the most influential features in predicting 
longitude, confirming the models' reliance on spatial 
features for robust performance. Additionally, 
dimensionality reduction techniques such as Principal 
Component Analysis (PCA) and Uniform Manifold 
Approximation and Projection (UMAP) are employed to 
visualize the clustering results in a reduced feature space. 
PCA is used to reduce the dimensionality of the data while 
preserving its variance, making it easier to interpret and 
visualize. UMAP provides a non-linear reduction 
technique that captures the global data structure, allowing 
for a more intuitive understanding of the spatial 
relationships and clustering configurations. 

These techniques collectively help in visualizing 
and validating the clustering results in a more interpretable 
format, making it easier to understand the spatial 
distribution of clusters and their relationships. By 
integrating clustering, regression analysis, model 
interpretability with SHAP, and dimensionality reduction, 
this comprehensive framework provides deep insights into 
3D road network data. This methodology not only 
enhances the understanding of complex datasets but also 
improves decision-making processes by offering clear 
insights into the factors influencing clustering patterns. 

The study's findings have significant implications for 
urban planning, infrastructure development, and safety 
assessments, demonstrating the value of advanced 
analytical techniques in handling and interpreting high-
dimensional data. By offering a detailed analysis of 
clustering, regression, and model interpretability, this 
research contributes to the ongoing advancements in data 
science and its applications in real-world scenarios. 

The rest of this article is organized as follows: 
Section II reviews existing methodologies related to 
clustering and interpretability of complex datasets, with a 
focus on 3D road network data and its challenges. Section 
III details the proposed methodology that integrates 
clustering techniques, model interpretability methods, and 
dimensionality reduction strategies for enhanced analysis 
of multidimensional data. Section IV describes the 
experimental setup used to validate the effectiveness of the 
proposed approach, including the use of K-Means 
clustering, Random Forest Classifier, and SHAP for 
interpretability. Section V presents the experimental 
results and offers an analysis of the findings, including the 
impact of various features on clustering and the 
visualizations provided by SHAP. Finally, Section VI 
concludes the article and proposes future research 
directions to further advance the understanding and 
application of clustering and interpretability in high-
dimensional datasets. 

 
2.  Related Work 
 

The integration of clustering, interpretability, and 
dimensionality reduction techniques has made significant 
strides in addressing the complexities associated with 
high-dimensional datasets, particularly in the domain of 
3D spatial data such as road networks. This research 
leverages these advancements to provide actionable 
insights for urban planning and transportation management, 
enhancing both data analysis and comprehension. A 
prominent approach for clustering high-dimensional data 
is K-Means clustering, known for partitioning data based 
on feature similarity. As outlined by Jain et al. (1999), K-
Means is widely applied in spatial data analysis due to its 
effectiveness in identifying natural groupings within 
datasets [1]. To optimize the number of clusters, the Elbow 
Method, introduced by Thorndike (1953), is a standard 
evaluation technique that identifies the point beyond which 
additional clusters do not significantly improve clustering 
quality [2]. Complementarily, the silhouette score, 
developed by Rousseeuw (1987), validates clustering 
performance by measuring intra-cluster similarity relative 
to inter-cluster separation [3]. Random Forests, introduced 
by Breiman (2001), provide robust ensemble learning 
capabilities, efficiently handling large datasets and 
offering insights into feature importance, making them 
invaluable in spatial data analysis [4]. The technique's 
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application to feature selection and spatial datasets has 
been further validated by Liaw and Wiener (2002), 
highlighting its versatility across diverse contexts [5].  

SHAP (Shapley Additive explanations), developed by 
Lundberg and Lee (2017), enhances model interpretability 
by attributing outputs to individual features, thereby 
offering a clear view of feature contributions [6]. The 
application of SHAP to clustering results in spatial data 
has been explored by Ribeiro et al. (2016), demonstrating 
its utility in understanding complex models [7]. 
Dimensionality reduction techniques are essential for 
visualizing high-dimensional data. Principal Component 
Analysis (PCA), a foundational method introduced by 
Hotelling (1933), reduces dimensionality while preserving 
variance, aiding in the visualization of clustering results 
[8]. UMAP, a non-linear dimensionality reduction 
technique developed by McInnes et al. (2018), captures 
both local and global data structures, making it particularly 
suitable for complex datasets [9]. These techniques have 
proven effective in spatial data visualization, as noted in 
studies by van der Maaten and Hinton (2008) [10]. Recent 
research has increasingly focused on the integration of 
clustering, interpretability, and dimensionality reduction to 
tackle the challenges of analyzing complex datasets. 
Kotsiantis et al. (2007) underscored the benefits of 
combining analytical methods to enhance clustering result 
interpretation [11]. Chien et al. (2021) demonstrated the 
value of merging interpretability methods with 
dimensionality reduction for spatial data analysis, 
showcasing improved insights into clustering outcomes 
[12]. Jolliffe and Cadima (2016) provided a thorough 
review of PCA’s applications [13], while SHAP has been 
widely applied across various contexts, including image 
classification and tabular data analysis (Ribeiro et al., 2016; 
Chen et al., 2018) [14, 15]. Hennig (2007) and Zhao et al. 
(2019) explored clustering methods specific to spatial data 
challenges, such as traffic pattern analysis [16, 17]. Liu et 
al. (2020) and Zhang et al. (2021) examined the use of 
PCA and UMAP for visualizing spatial datasets, 
demonstrating their effectiveness in conjunction with 
clustering techniques [18, 19].  

Furthermore, Ribeiro et al. (2018) and Luo et al. 
(2022) advanced the field by integrating SHAP with 
clustering and dimensionality reduction methods, 
enhancing the interpretability of high-dimensional data [20, 
21]. Xie et al. (2023) pushed these boundaries by 
developing new clustering algorithms combined with 
interpretability methods for large-scale data analysis [22]. 
This study builds on existing research by integrating 
advanced techniques like K-Means clustering, Random 
Forest feature analysis, SHAP interpretability, and 
dimensionality reduction methods such as PCA and 
UMAP to analyze 3D road network data. By applying 
these techniques, the study offers a comprehensive 
framework for understanding the complexities of high-

dimensional spatial datasets. The research aims to uncover 
deeper insights into clustering patterns and the factors 
influencing them, ultimately enhancing decision-making 
and operational efficiencies in urban planning and 
transportation management. 
 
3.  Proposed Methodology 
 

This research employs a sophisticated and detailed 
methodology to analyze a comprehensive geospatial 
dataset, with the    goal of advancing the understanding of 
feature importance and model interpretability in large-
scale geospatial analysis.      The methodology integrates 
advanced data processing, machine learning, and 
interpretability techniques to provide a      robust 
framework for high-impact research. 
 
 
3.1. Methodology for Analyzing 3D Spatial Network 

Data Using Linear Regression 
 

This study introduces a comprehensive methodology 
for analyzing 3D spatial network data that integrates 
advanced data ingestion, clustering, regression, and model 
interpretation techniques using Python and PySpark. 
Figure 1 illustrates the workflow for analyzing 3-D road 
network dataset for linear regression, detailing the 
sequential steps involved in preparing the data, applying 
the regression model, and interpreting the results. The 
methodology initiates with data ingestion through PySpark, 
where a Spark session is set up to load and preprocess 3D 
spatial network data from a text file. This data is then 
converted from a Spark DataFrame to a Pandas DataFrame 
to facilitate further manipulation and analysis. In the data 
preparation phase, columns are cast to appropriate 
numerical types, and features are extracted to set the stage 
for in-depth analysis. For clustering, the K-Means 
algorithm is employed to determine the optimal number of 
clusters using the Elbow Method, with inertia values 
plotted for cluster counts ranging from 1 to 14. The 
optimal number of clusters is identified as 10, and K-
Means is executed with this cluster count, followed by 
evaluation using the silhouette score. Clustering results are 
visualized through scatter plots that highlight distinct 
cluster regions. In the regression analysis, a Linear 
Regression model is trained to predict longitude, with 
performance evaluated through Mean Absolute Error 
(MAE) and Mean Squared Error (MSE). SHAP (SHapley 
Additive exPlanations) is utilized to interpret the 
regression model. A secondary Linear Regression model is 
trained to predict cluster labels, with model performance 
assessed using accuracy and detailed classification reports. 
SHAP analysis is again applied to provide insights into 
feature contributions. The methodology also incorporates 
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rigorous resource management, including model cleanup 
and garbage collection, to optimize memory usage. 

 

 
 

Fig 1. Workflow for Analyzing a Dataset for Linear Regression 
 
 
3.2. Methodology for Analyzing 3D Spatial Network 

Data Using SVM 
 

Here, Figure 2 presents a comprehensive 
methodology for analyzing 3D road network data by 
integrating advanced machine learning techniques, 
specifically K-Means clustering and Support Vector 
Machines (SVM), for both regression and classification 
tasks i.e. by using Support Vector Regression (SVR). 
Figure 2 illustrates the workflow for analyzing a dataset 
using SVM, detailing the steps involved in preparing the 
data, training the SVM model, and evaluating its 
performance. The methodology begins with data 
preparation, where the dataset is loaded and processed 
using Pandas. This involves parsing the data into columns 
such as id, longitude, latitude, and altitude, and converting 
these columns to float types for accurate numerical 
analysis. Longitude and latitude are selected as features, 
while longitude is designated as the target variable for 
regression. The dataset is then divided into training and 
testing subsets using an 80-20 split ratio to ensure robust 
and reproducible results. For clustering, the  
 

Elbow Method is applied to determine the optimal 
number of clusters by plotting inertia values for cluster 
counts ranging from 1 to 14, identifying four as the 

optimal number. The K-Means algorithm is employed to 
perform clustering, with the quality of clusters evaluated 
using the silhouette score and results visualized in a 2D 
plot that highlights cluster centers. In the regression 
analysis, an SVM model with an RBF kernel is trained to 
predict longitude, and model performance is assessed 
using Mean Absolute Error (MAE) and Mean Squared 
Error (MSE). SHAP (SHapley Additive exPlanations) 
analysis is utilized to interpret feature importance, 
applying this analysis to a subset of 1,000 samples to 
enhance computational efficiency. In the classification 
phase, an SVM classifier is used to predict cluster labels 
derived from the K-Means clustering phase, with 
performance metrics including accuracy, precision, recall, 
and F1-score provided. SHAP analysis is also conducted 
for the classification model to elucidate the impact of 
features. The methodology ensures rigorous resource 
management, including model cleanup and garbage 
collection, while tracking execution time to maintain 
operational efficiency. This approach offers a robust 
framework for detailed data analysis and model 
interpretability, contributing valuable insights to data-
driven decision-making processes. 
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Fig 2. Workflow for Analyzing a Dataset for SVM 

 
3.3. Clustering Analysis 

Figure 3 depict the experimental results obtained 
through Elbow Method in order to determine the optimal 
number of clusters for efficient clustering process. The 
analysis employs K-Means clustering to uncover natural 
groupings within the dataset, with the dataset split into 
training and testing sets to validate clustering robustness. 
The Elbow Method assesses inertia to pinpoint the optimal 
cluster count, showing differing results of 4 and 10 
clusters, respectively. The final clustering solution's 
quality is evaluated using the silhouette score, which 
measures the separation and cohesion of clusters to gauge 
the effectiveness of the clustering process. 
 
3.4. Clustering Visualization 

To further understand the structure of SHAP values, 
clustering is carried out using the K-Means algorithm with 
various numbers of clusters. This process reveals patterns 
in feature contributions. After clustering, dimensionality 
reduction techniques are used to visualize the SHAP 
values within the identified clusters. Figure 4 illustrates the 
clustering results and SHAP value visualizations for 
different cluster configurations. These visualizations aid in 
comprehending how feature importance varies across 

clusters and highlight the impact of clustering on model 
interpretability. 
 
3.5. Model Interpretability and SHAP Analysis 

To enhance the interpretability of the models, 
SHapley Additive exPlanations (SHAP) are employed. 
The dataset is processed to retrain linear regression and 
SVM models. SHAP values are then calculated to clarify 
the influence of features on different predictions.  
 
The SHAP analysis includes: 
SHAP Bar Chart: This chart ranks features based on their 
impact on model predictions, supporting the insights from 
the summary plot. Longitude is identified as the most 
significant predictor, with latitude and altitude also playing 
important roles. 
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Fig 3. The Elbow Method to determine the optimal number of clusters for Linear Regression (LR) and SVM 
 
 

 
Fig 4. Clustering Visualization with K=4 and K=10 for Linear Regression and SVM 

 
3.6. Helper Functions 

In the analysis of clustering and model interpretability 
within the 3D road network dataset, several key helper 
functions underpin the methodologies employed, each 
contributing to the robustness of the results.  
For K-Means clustering, inertia calculation is crucial, 
which is defined as presented in Equation (1). 
 

    (1) 
 
Where Xi is a data point, µk is the centroid of cluster k, 
and C is the set of centroids. This calculation is essential 
for assessing how well the data points fit within their 
respective clusters, directly influencing the evaluation of 
clustering performance.  

The silhouette score further refines cluster quality 
assessment, which can be calculated as per Equation (2). 

 

        (2) 
 
Here, ‘a’ is the average distance between a data point and 
all other points within the same cluster, while ‘b’ 
represents the minimum average distance to points in the 
nearest neighboring cluster. This score provides a measure 
of both cohesion and separation, critical for validating the 
effectiveness of the K-Means clustering results. 
Additionally, SHAP (Shapley Additive explanations) 
values are utilized for model interpretability, computed as 
per Equation (3). 
 

      (3) 
 
The equation (3) provides a detailed decomposition of the 
model’s prediction, f(x), by subtracting the expected 
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prediction value SHAP(x) thereby offering insights into 
the individual contributions of features to the model’s 
output. Together, these helper functions form a cohesive 
framework for analyzing clustering performance and 
model interpretability, ensuring a comprehensive and 
insightful evaluation of the 3D road network dataset. 
 
 
4. Experimental Setup 
 

The experimental setup systematically analyzed the 
geospatial dataset, starting with data acquisition and 
preprocessing for quality and consistency. Feature 
engineering and discretization enhanced model 
performance, followed by model training. SHAP analysis 
provided interpretability, while clustering and 
dimensionality reduction revealed patterns and 
relationships, deepening insights into the geospatial data. 
 
4.1. Data Acquisition and Preprocessing 

The dataset comprises 434,874 records from a high-
resolution 3D road network in North Jutland, Denmark, 
encompassing key geospatial attributes such as longitude, 
latitude, and altitude [27]. The dataset was ingested into a 
Pandas Data Frame, where columns were systematically 
renamed to enhance clarity and consistency. Rigorous 
preprocessing protocols were applied to ensure data 
quality, including the removal of duplicates, verification of 
missing values, and conversion of all attributes to 
appropriate numeric types. The features were normalized 
using the Min-max Scaler, standardizing the data to a 
uniform scale. Critically, the longitude attribute was 
discretized into 100 equal-width bins, converting 
continuous geospatial data into categorical labels to 
facilitate subsequent classification tasks. 
 
4.2. Coordinated Frameworks for Data 
Preparation, Analysis, and Resource Optimization 

In the data preparation phase, both frameworks 
emphasize the meticulous organization of data into 
relevant columns, ensuring that key features are accurately 
represented for subsequent analysis. The clustering 
evaluation process is uniformly addressed by determining 
the optimal number of clusters, assessing clustering quality, 
and visualizing the distinct clusters to gauge the 
effectiveness of the clustering algorithm. Regression 
analysis in both frameworks involves the development of 
predictive models for longitude, with performance 
assessed using similar error metrics and a thorough 
analysis of feature importance. For classification, both 
frameworks integrate models to predict cluster labels, with 
performance evaluated through consistent metrics. 
Additionally, resource management is a shared focus, 
highlighting the importance of efficient resource 
utilization, tracking execution time, and optimizing 

resources throughout the analysis. This approach ensures 
that each framework maintains its unique focus and 
distinct methodological steps while avoiding redundant or 
repetitive descriptions. 

 
4.3. Evaluation Framework for Linear Regression 

This framework introduces a comprehensive approach 
for analyzing 3D spatial network data, integrating data 
processing, clustering, regression, and model interpretation 
techniques. The process starts with data preparation, where 
3D spatial network data is preprocessed, focusing on 
identifying and extracting key numerical features. For 
clustering, the optimal number of clusters is determined 
using an evaluation method, with distinct cluster regions 
identified and visualized to reveal spatial patterns. In the 
regression analysis, a Linear Regression model is 
developed to predict longitude, with performance assessed 
using error metrics. Additional analysis is conducted to 
interpret the regression model and understand feature 
importance, with visualizations illustrating feature 
contributions. A secondary model is trained to predict 
cluster labels, with accuracy and classification metrics 
used for evaluation. 

Efficient resource management is emphasized 
throughout the analysis to ensure optimal resource use. 
Recommendations include addressing data handling 
challenges, improving model interpretation clarity, and 
refining visualization techniques, particularly in clustering 
analysis and the application of more robust techniques for 
cluster label prediction. 
 
4.4. Evaluation Framework for SVM 

The setup involves a systematic approach to validate 
and evaluate the proposed methodology for analyzing 3D 
road network data. Data preparation includes organizing 
data into relevant columns and splitting it into training and 
testing sets. The clustering phase involves determining the 
optimal number of clusters, with an assessment of 
clustering quality and visualization of distinct cluster 
centers. For the regression analysis, an SVM model is 
developed to predict longitude, with performance assessed 
using error metrics such as mean absolute error and mean 
squared error. The importance of features in the regression 
model is further analyzed using representative samples. In 
the classification phase, an SVM classifier predicts cluster 
labels, and performance is evaluated using accuracy, 
precision, recall, and F1-score. Further analysis is 
conducted to understand the impact of features on 
classification outcomes. The setup includes efficient 
resource management and monitoring of execution time 
for each phase, providing a comprehensive framework for 
evaluating the effectiveness of the proposed methodology 
in 3D road network data analysis. 
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5. Experimental Results and Discussion 
 

This section presents the comprehensive evaluation of 
the proposed methodology, which integrates K-Means 
clustering with Linear Regression and SVM models to 
analyze 3D road network data. The analysis focuses on 
clustering quality, classification accuracy, regression 
performance, and interpretability using SHAP analysis. 
 
Clustering Analysis: K-Means clustering was performed 
with two configurations: four and ten clusters. The ten-
cluster configuration achieved a higher Silhouette Score of 
0.4436 compared to 0.4286 for the four-cluster setup, 
indicating slightly better-defined clusters with improved 
cohesion and separation. As shown in Tables 1, 3, 5, and 7, 
the four-cluster setup exhibited superior classification 
performance with an SVM model, achieving an accuracy 
of 97.22% and high precision, recall, and F1-scores. This 
suggests that the four clusters were well-separated and 
effectively captured the underlying data patterns. In 
contrast, the ten-cluster setup resulted in a minor decrease 
in accuracy to 95.20% and slightly lower average precision, 
recall, and F1-scores. While the ten-cluster configuration 
captured more granular distinctions within the data, the 
increased complexity introduced a trade-off in 
classification performance. Nevertheless, both 
configurations demonstrated robust predictive 
performance, suggesting that the choice between four and 
ten clusters depends on the specific requirements of the 
application, balancing the need for model interpretability 
and predictive accuracy. 
 
Regression Analysis: The regression analysis was 
conducted to predict longitude from latitude and altitude 
using both Linear Regression and SVM models. For 
Linear Regression, the four-cluster setup showed 
exceptional performance with a Mean Absolute Error 
(MAE) of 1.2440e-15 and a Mean Squared Error (MSE) of 
2.2098e-30, indicating negligible errors. SHAP analysis 
for this configuration was completed in 0.37 seconds, 
reflecting highly accurate predictions. The ten-cluster 
configuration exhibited similar performance metrics with 
negligible MAE and MSE and slightly faster SHAP 
analysis (0.32 seconds), underscoring the model's 
robustness across different cluster configurations. Table 2, 
4, 6, and 8 show detailed metrics and comparison results 
for Linear Regression and SVM regression models across 
both cluster configurations. For SVM regression, the four-
cluster setup achieved an MAE of 0.0346 and an MSE of 
0.0018, with a SHAP analysis time of 164.40 seconds, 
demonstrating effective spatial relationship modeling. The 
ten-cluster configuration showed similar regression 
metrics and a slightly faster SHAP analysis (152.33 
seconds), indicating consistent performance despite 
increased complexity. 

SHAP Analysis: SHAP analysis was pivotal in 
interpreting the regression models by elucidating 
influential features. For Linear Regression, SHAP analysis 
underscored the significance of latitude and altitude in 
predicting longitude, with the four-cluster setup offering 
clear insights into feature impacts. In contrast, the ten-
cluster setup, while providing faster analysis, 
demonstrated slightly reduced clarity due to its increased 
complexity. Similarly, for SVM, SHAP analysis 
effectively highlighted feature importance, although the 
ten-cluster configuration slightly compromised 
interpretability. Figure 5 displays the SHAP bar plot 
distributions across various clustering configurations. 
These figures provide detailed insights into how feature 
contributions shift with clustering complexity, highlighting 
the trade-offs between analysis speed and interpretability. 
 
Discussion: The results emphasize the impact of cluster 
configuration on model performance. The four-cluster 
configuration provided well-defined clusters that enhanced 
classification and regression performance, offering 
superior interpretability and predictive accuracy. Although 
the ten-cluster setup improved clustering quality, it 
introduced complexity that slightly affected classification 
performance while maintaining robust regression accuracy. 
Both Linear Regression and SVM models demonstrated 
consistent performance across configurations, with 
minimal differences in error metrics for regression tasks. 
SHAP analysis effectively elucidated feature importance, 
with the four-cluster setup offering clearer insights. The 
ten-cluster setup, while efficient in SHAP analysis, 
showed marginally reduced interpretability. Overall, the 
four-cluster configuration combined with SVM models 
proved to be the most effective strategy for analyzing 3D 
road network data, balancing accuracy, interpretability, 
and operational efficiency. 
 
Table 1. Linear Regression Model Performance for 

FourClusters 
Class Precision Recall F1-

Score 
Support 

0 0.71 0.24 0.35 32,663 

1 0.21 0.62 0.31 14,845 

2 0.26 0.32 0.28 25,000 

3 1.00 0.09 0.16 14,467 

Accuracy - - 0.30 86,975 

Macro Avg 0.54 0.31 0.28 86,975 

Weighted 
Avg 

0.54 0.30 0.29 86,975 
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Table 2: Linear Regression Metrics Performance for Four 
Clusters 
 
Metric 

Value 

Silhouette Score (10 clusters) 0.4436 

Linear Regression MAE 1.2440e-15 

Linear Regression MSE 2.2098e-30 

Linear Regression SHAP 
Analysis Time 

0.37 seconds 

Accuracy of Linear Regression 
on Cluster Labels 

0.0609 

Second Linear Regression 
SHAP Analysis Time 

0.55 seconds 

Total Execution Time 0.70 seconds 

 
Table 3. Linear Regression Model Performance for Ten 

Clusters 

 
Table 4. Linear Regression Metrics Performance for Ten 

Clusters 
Metric Value 

Silhouette Score (10 clusters) 0.4286 

Linear Regression MAE 1.2440e-15 

Linear Regression MSE 2.2098e-30 

Linear Regression SHAP Analysis Time 0.32 
seconds 

Accuracy of Linear Regression on Cluster 
Labels 

0.2993 

Second Linear Regression SHAP Analysis 
Time 

0.46 
seconds 

Total Execution Time 0.63 
seconds 

 
 

Table 5. SVM Model Performance for Four Clusters 
Class Precisi

on 
Recall F1-

Score 
Support 

0 0.98 0.96 0.97 32,663 

1 1.00 0.93 0.96 14,845 

2 0.95 1.00 0.97 25,000 

3 0.97 1.00 0.98 14,467 

Accuracy - - 0.97 86,975 

Macro Avg 0.97 0.97 0.97 86,975 

Weighted 
Avg 

0.97 0.97 0.97 86,975 

 
Table 6. SVM Metrics Performance for Four Clusters 
Metric Value 

Silhouette Score (4 clusters) 0.42856108376016255 

SVM Regression MAE 0.03456217002558308 

SVM Regression MSE 0.0018446740034164684 

SVM Regression SHAP 
analysis time 

164.40 seconds 

Accuracy of SVM on cluster 
labels 

0.9722334004024145 

 
Table 7. SVM Model Performance for Ten Clusters 
Class Precision Recall F1-

Score 
Support 

0 1.00 0.85 0.92 7,304 
1 0.97 1.00 0.98 11,040 
2 0.89 1.00 0.94 13,548 
3 1.00 0.93 0.96 7,420 
4 0.95 1.00 0.98 11,426 
5 0.99 0.89 0.94 7,390 
6 0.98 0.84 0.90 7,323 
7 1.00 1.00 1.00 2,019 
8 0.90 0.96 0.93 9,653 
9 0.98 0.99 0.98 9,852 
Accuracy - - 0.95 86,975 
Macro Avg 0.96 0.94 0.95 86,975 
Weighted 
Avg 

0.96 0.95 0.95 86,975 

 
Table 8. SVM Model Metrics for Ten Clusters 
Metric Value 

Silhouette Score (10 clusters) 0.44356130693333673 

SVM Regression MAE 0.03456217002558308 

SVM Regression MSE 0.0018446740034164684 

SVM Regression SHAP 
analysis time 

152.33 seconds 

Accuracy of SVM on cluster 
labels 

0.9520206956021845 

 

Class Precision Recall F1-
Score 

Suppor
t 

0 0.00 0.00 0.00 7304 
1 0.00 0.00 0.00 11040 
2 0.00 0.00 0.00 13548 
3 0.31 0.70 0.43 7420 
4 0.00 0.01 0.00 11426 
5 0.00 0.00 0.00 7390 
6 0.00 0.00 0.00 7323 
7 0.00 0.00 0.00 2019 
8 0.00 0.00 0.00 9653 
9 0.00 0.00 0.00 9852 
Accuracy 0.06 - - 86975 
Macro 
Avg 

0.03 0.07 0.04 86975 

Weighte
d Avg 

0.03 0.06 0.04 86975 
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Fig 5. xAI with Shapley Value with optimal number of clusters (K=4 and 10) for Linear Regression and SVM 

 
6. Conclusion 
 

This research presents a comprehensive methodology 
for analyzing 3D road network data by integrating 
clustering, regression, and classification techniques, 
supplemented by model interpretability tools such as 
SHAP analysis. The study evaluated K-Means clustering 
with two configurations ten clusters and four clusters 
yielding silhouette scores of 0.4436 and 0.4286, 
respectively. Despite the slightly higher silhouette score 
for ten clusters, the four-cluster configuration proved 
superior for classification tasks, achieving high accuracy 
(95.20%) with strong performance metrics, including 
precision, recall, and F1-score consistently above 0.90 
across all classes. This result underscores the importance 
of selecting an optimal number of clusters to balance 
complexity and performance, as the ten-cluster 
configuration led to significantly poorer classification 
outcomes. In the regression phase, SVM with an RBF 
kernel outperformed Linear Regression, demonstrating 
realistic error metrics (MAE of 0.0346 and MSE of 
0.0018), which indicated a well-fitted model for predicting 
longitude from spatial features.  

Conversely, the Linear Regression model exhibited 
near-zero errors (MAE ≈ 1.244 × 10^−15, MSE ≈ 2.2098 
× 10^−30), suggesting overfitting, particularly within the 
ten-cluster setup. SHAP analysis further provided critical 
insights into feature importance, validating the 
contributions of spatial features like latitude and altitude to 
the SVM regression model, especially in the four-cluster 
scenario. However, the interpretability of models using the 
ten-cluster configuration was limited by poor clustering 
quality, reducing the utility of SHAP's feature importance 
explanations. Key findings highlight the four-cluster 
setup's consistent superiority over ten clusters across both 
classification and regression tasks, emphasizing the 
necessity of careful cluster count selection to achieve 
optimal model performance. The SVM models with RBF 
kernels showcased strong predictive capabilities and 
robustness, making them well-suited for spatial data 

analysis in 3D road networks. Moreover, SHAP analysis 
effectively elucidated the impact of features on model 
predictions, although trade-offs between computational 
efficiency and interpretability were noted, particularly for 
the ten-cluster setup. Overall, this methodology 
demonstrates robust performance and interpretability in 
analyzing 3D road network data, particularly when 
leveraging SVM regression and classification models with 
optimal clustering configurations. Future research should 
explore advanced clustering techniques and further refine 
model parameters to enhance both accuracy and 
interpretability. Additionally, incorporating 
complementary interpretability tools such as LIME could 
provide a broader understanding of model behavior, 
especially when dealing with complex datasets like 3D 
spatial networks. This study's insights into model selection 
and interpretability contribute to the growing body of 
knowledge on applying machine learning to spatial data, 
with implications for improving the precision and 
effectiveness of predictive modeling in road network 
analysis. 
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