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Abstract 
 

In this paper, we address the problem of linear minimum mean-squared error (MMSE) 

transmitter design for the cognitive radio (CR) multi-user multiple-input single-output 

(MU-MISO) broadcasting channel (BC), where the cognitive users  are subject to not only a 

sum power constraint, but also a interference power constraint. Evidently, this multi-constraint 

problem renders it difficult to solve. To overcome this difficulty, we firstly transform it into its 

equivalent formulation with a single constraint. Then by utilizing BC-MAC duality, the 

problem of BC transmitter design can be solved by focusing on a dual MAC problem, which is 

easier to deal with due to its convexity property. Finally we propose an efficient two-level 

iterative algorithm to search the optimal solution. Our simulation results are provided to 

corroborate the effectiveness of the proposed algorithm and show that this proposed CR 

MMSE-based scheme achieves a suboptimal sum-rate performance compared to the optimal 

DPC-based algorithm with less computational complexity. 

 

 

Keywords: Cognitive radio, broadcast channel, multiple access channel, multi-user MISO, 

MMSE. 
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1. Introduction 

Recently, the concept of cognitive radio (CR) has been proposed in order to improve the 

spectrum utilization efficiency [1]. In CR, a secondary (unlicensed) user (SU) is allowed to 

opportunistically or concurrently access the spectrum with the primary (licensed) users (PUs) 

as long as it won’t introduce harmful interference. However, the introduction of CR raises new 

challenges in the network design. One of them is the transmitter design in multiuser CR 

networks with multiple-input single-output broadcasting channel (MU-MISO-BC). Different 

from the traditional wireless networks, in CR, SUs are subject to not only a sum power 

constraint at the transmitter, but also the interference power constraint at the PU. Such 

multiple-constraint property makes the solutions in traditional networks infeasible for CR. 

Although a dirty paper coding (DPC) [2] based algorithm was proposed in [3] that maximizes 

the weighted sum rate of the CR MU MIMO-BC, it is difficult to implement in practical 

systems due to its non-linear, since a high computational burden is inevitable. In order to avoid 

the high complexity of the DPC based nonlinear algorithm, many linear precoding schemes 

are attempted to be extended to the CR network [4-8]. Here, the linear precoder method based 

on minimum mean-squared error (MMSE) criterion is considered, which achieves a 

suboptimal sum-rate performance compared to the sum capacity found for CR DPC-based 

algorithm, but has much lower computational complexity.  

In this paper, the problem of minimizing the sum of all normalized MSE for the K SUs in 

CR MISO-BC is discussed. Owing to the coupled structure of the transmitted signals, 

optimization problems associated with BC are typically non-convex, and are difficult to solve 

directly. The key technique used to overcome this difficulty is to transform the BC problem 

into its convex multiple access channel (MAC) problem via a BC-MAC duality relationship. 

The conventional BC-MAC duality is established via BC-MAC signal transformation, and has 

been successfully applied to solve beamforming optimization [9], 

signal-to-interference-plus-noise ratio (SINR) balancing [10], and capacity region 

computation [11-13]. However, this conventional duality approach is applicable only to the 

case with a single sum power constraint. Due to this limitation, the previous algorithms relying 

crucially on a single sum power constraint are not applicable to the problem with multiple 

linear constraints, which is the case of interest in this paper. Beginning with formulating the 

multi-constraint CR MISO-BC problem, we first transform it into an equivalent 

single-constraint optimization problem with multiple auxiliary variables. By fixing the 

auxiliary variables, a dual single-input multiple-output multiple access channel (SIMO-MAC) 

problem is derived based on the results in [14], which maintains the same MSE achievable 

region as that of the original MISO-BC. Next, we propose an Iterative Power Allocation 

Algorithm to solve the dual SIMO-MAC problem, and then map the results to the BC 

MMSE-based linear precoding. After that, a Complete Iterative Algorithm is proposed to 

update the auxiliary variables and solve the original optimization problem formulated.  

The following notations are used in this paper. Bold upper and lower case letters denote 

matrices and vectors, respectively; ( )* and ( )
T
 denote the conjugate transpose and transpose 

respectively; IM denotes an M M  identity matrix; tr( ) denotes the trace of a matrix; [x]
+
 

denotes max(x, 0); ( )
b
 and ( )

m
 denote the quantities associated with a broadcast channel and a 

multiple access channel respectively; E[ ] denotes the expectation operator.  

2. System Model and Problem Formulation 

We consider a CR system as shown in Fig. 1, where the MU-MISO-BC consists of K SUs 
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coexisting with one PU. The secondary base station (SBS) accesses the licensed spectrum to 

broadcast data to K SUs. The SBS has M antennas, while both SUs and the PU equip a single 

antenna. 

The transmit-receive signal model from the SBS to the i
th
 SU, denoted by SUi, for i= 1,..., K, 

can be expressed as 

i i iy = + zh x ,                                                                       (1) 

where yi is the received signal, hi is the 1 M  channel vector from SBS to SUi, and zi is the 

Gaussian noise with zero mean and variance 2 . x = UQd  is the M× 1 transmitted signal 

vector, where d = [d1,...,dK]
T
 denotes unity-energy random transmit symbols with E{dd*}=IK; 

U = [u1,...,uK] (||ui||2=1) denotes the normalized beamforming matrix for the transmitted 

symbols, and ui maps the transmitted signal di for SUi onto M transmit antennas; Q = diag{q} 

and the vector q = [q1,...,qK] denotes the transmission power for each SU. The received signal 

yi is scaled by /i iq , where 
i adds additional degree of freedom which can be used for MSE 

optimization，and 
1 2[ , ,... , ]K     . For simplifying the notation, we define h0 to represent  

the PU’s interference channel (PUI) caused by SBS, which is a M× 1 channel gain vector 

between the transmitters of SBS and the PU. We further assume that hi for i = 1,...,K, and h0 are 

known to the SBS and SUi. 

diag q1/2
d=[d1,d2,…,dK]T

U

.
.
.

x
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.
.
.
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h2
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z1
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1
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1/2

1q
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Kq
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2d
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Kd
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SU1

SU2

SUK

h0

PU  
Fig. 1.  System model 

Based on the aforementioned system model, the problem of MMSE transmitter design for 

CR MU-MISO-BC can be formulated as: 

Problem 1 (Main Problem): 

1{ } : 0,
1

min
K
i

K
b

i

i


 



b b
i iQ Q 

 

s.t.
1 1

, ( )
K K

* b b

0 i 0 t i u

i i

P and tr P
 

  h Q h Q ,               

where b

i is the individual normalized MSE, i.e.,
2

[ ], {1,2, ,... }i i

b

i E d d i K


     . b

iQ  is the 

M× M transmit signal covariance matrix for SUi and is semidefinite. Pt denotes the interference 

threshold of the PU, and Pu denotes the sum power constraint at the SBS. Compared with the 

similar problem under a non-CR setting, the key difference is that in addition to the sum power 

constraint, an interference power constraint is required. 
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3. CR MU-MISO Linear Processing 

3.1 Equivalence 

We transform Problem 1 into the following problem with a single constraint: 

Problem 2 (MISO-BC) 

1{ } : 0,, 0 1

( , ) max
K
it u

K
b

t u i
q q i

g q q 
  

 b b
i iQ Q 

 

s.t.  
1

( ) ( ( ) ) 0
K

t t u u

i

q P q tr P


    
K

* b b

0 i 0 i

i=1

h Q h Q , 

where qt and qu are the two auxiliary variables.The relationship between Problem 1 and 

Problem 2 can be summarized as follows. 

Proposition 1: the optimal solution of Problem 1 is equal to that of the problem 

,min ( , )
t uq q t ug q q .   

Proof: Evidently, if , 1,... ,b

i i K  Q are feasible for Problem 1, then it is also feasible for 

Problem 2. That is to say, the feasible region of Problem 1 is a subset of that of Problem 2. 

Therefore, the optimal solution of Problem 2 is an upper bound on that of Problem 1. 

Furthermore, we can prove that the upper bound is tight.  

The KKT condition of the Problem 1 with respect to b

iQ  can be listed as follows: 

*1

1 0 0 2 ., { , ..1,2 , }

K
b

i

i

M ib

i

i K



 

 

    



 h h I

Q
,                     (2) 

*

1 0 0

1

( ) 0
K

b

i t

i

P


 h Q h ,                                                        (3) 

2

1

( ( ) ) 0
K

b

i u

i

tr P


  Q ,                                                        (4) 

where 
1  and 

2  are the Lagrange multipliers for the interference power constraint and the 

sum power constraint respectively;   is the Lagrange multiplier associated with the 

constraint b

i 0Q . When the optimal solution of Problem 1 is achieved, we assume that the 

corresponding optimal variables are * * * *

1 2( 1, , ), , and... b

i ii K  Q   Ω . 

We now list the KKT conditions of Problem 2 as follows:  

*=1

0 0

-

= ( + ) ...+ , {1,2, , }

K
b

i

i

t u M ib

i

q q i K







 



 h h I

Q
,                              (5) 

*

0 0

=1 =1

( + ( ) - - )=0
K K

b b

t i u i t t u u

i i

q q tr q P q P  h Q h Q ,                                   (6) 

where   is the Lagrange multiplier, and i is the Lagrange multiplier associated with the 

constraint 0b

i Q . If we choose * * * *

1 2..( 1, , ), 1. , , ,b b

i i t u i ii K q q         Q Q , then the 

KKT conditions of Problem 2 are satisfied. In general, the KKT conditions are only necessary 

for a solution to be optimal for a non-convex problem. However, in the following we will show 

that for Problem 2, the KKT conditions are also sufficient for optimality.  

According to Corollary 2 in [14], the achievable SINR region of the primal MISO-BC under 
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the single constraint 
1

( )
K

t u t t u u

i

q q tr q P q P


   
K

* b b

0 i 0 i

i=1

h Q h Q (see Fig. 2(a)), is equal to the 

achievable SINR region of its dual SIMO-MAC with a single weighted sum power constraint 

2

1

( )
K

m

i t t u u

i

tr Q q P q P


  (see Fig. 2(b)), i.e., ,b m

i iSINR SINR for i=1,2,...,K.   

Diag q1/2
d=[d1,d2,…,dK]T

U
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Fig. 2(a). MISO-BC system, the linear transmit covariance constraint 

is:
1

( )
K

t u t t u u

i

q q tr q P q P


   
K

* b b

0 i 0 i

i=1

h Q h Q  

U
*

.
.
.

h1*

z

1/2

1p
1/2

2p

1/2

Kp

d1

d2

dK

h2*

hK*

diag



x
diag p-1/2

∧

d .
.
.

SBS

y

 

Fig. 2(b). dual SIMO-MAC system, 
2

1

( )
K

m

i t t u u

i

tr Q q P q P


  , (0, )t u MN q q*

0 0
z h h I: , 

p=[p1,p2,...,pK] is the power allocation vector for the dual MAC 

In Fig. 2(a),                        
* *

* * * * 2

=1

=

- +

b i i i i i

i K

j i j j i i i i i i

j

q
SINR

q q 

u h h u

h u u h u h h u

，                                      (7) 

=b

i
2

[ ]i iE d d


 , 

2

[ ( ) ]i

i i i

i

E z d
q


  hU Qd , 

2 2

* * 2 * * 1i i

i i i i i i i i

i iq q

 
      h UQU h h u u h .                     (8) 

Due to the coupled structure of the transmitted signals, we can get that b

i is not differentiable 

on *( )b b

i i i i iqQ Q u u , that is why the optimization problems associated with the BC are usually 

non-convex.  

While in Fig. 2 (b), 
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* *

* * * *

0 0

1

=

( + + - )

m i i i i i

i K

i j j j t u M i i i i

j

p
SINR

p q q p




u h h u

u h h h h I h h u

,                               (9) 

2

[ ]m
ii iE d d



  ,                                              

2

* *

1

[ ( ) ]
K

i

i j j j i

ji

E d p d
p





  u h z , 

2

*

1

( )
K

i

j j j t u M

ji

p q q
p





  * *

i 0 0 i
u h h h h I u  * 1i i i  *

i i
u h h ui .(10) 

Since ,b m

i iSINR SINR  then 

* *

2
1

( )

+

K

i j j j i

j

i i

q

q q



h u u h

=

* *

*
1 * 0 0

( )
+

+

K

i j j j i

j t u M

i i

i i

p
q q

p p



u h h u
h h I

u u  

* * *

0 0* * 2
12 2

( + + )

=

K

i j j j t u M i

ji i

i i

i i

p q q

q p


 


u h h h h I u

h UQU h
.                          (11) 

Combining (11) with (8) and (10), we can get that the primal MISO-BC and its dual 

SIMO-MAC also have the same MSE achievable region, which is shown in the following 

proposition. 

Proposition 2: for fixed qt and qu, Problem 2 is equivalent to the following form: 

Problem 3 (dual SIMO-MAC): 

, ,
=1

max -
K

m

i

i


p U

 

s.t.  
1

,
K

i t t u u

i

p P P q P q P


   .  

According to the equation (10), we can see that m

i is convex on pi, ui, and i . Thus, the 

Problem 3 is a convex optimization problem. 

We now assume that , 1,2,... ,b

i i K  
:

Q satisfy the KKT conditions in (5) (6), and achieve the 

sum MSE 
:

. Then, through BC-MAC dual mapping, we can obtain the corresponding 

solution 1 2[ , , , ]... Kp p p  
: : : :

p ,
:

U  for Problem 3 to achieve the same 
:

. We next assume that 

_

, 1,2,... ,b

i i K  Q are the optimal solutions of the Problem 2 with the optimal sum MSE
_

 , 

where
_

 
:

. Thus, we can obtain the optimal solution of the Problem 3 ,p U  by BC-MAC 

dual mapping. It is well known that Problem 3 is a convex optimization problem. Hence, we 

have * ( ),i i i ip p t p p  
: :

 * ( ),i i i it  
: :

u u u u  ..1, ,.i K  , where 0 < t < 1, is a better solution 

than ip
:

, ,i

:

u  ..1, ,.i K   for Problem 3. Through MAC-BC dual mapping, we transform the 
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dual MAC solution * *, , .1, ,..i ip i K  u  into its corresponding BC solution *, 1 ., ,..b

i i K  Q . Since 

MAC-BC dual transformation is continuous, we can always find a t such that 

* , 1,2  , ,...b b

i i i K  
:

Q Q , for a given  > 0. That is to say, , 1,2,... ,b

i i K  
:

Q  is not the local 

optimal solution, which is contradicted with the KKT conditions. Therefore, the KKT 

conditions for Problem 2 are also sufficient for optimality, and the proof for equivalence 

between the Problem 1and the Problem 2 with * *

1 2,t uq q   follows. 

3.2 MMSE Optimization for the Dual MAC 

According to Proposition 2, for fixed qt and qu, Problem 2 is equivalent to Problem 3. In this 

subsection, we propose an efficient algorithm to solve Problem 3.  

In the dual SIMO-MAC (as shown in Fig. 2(b)), the symbol vector d is transmitted from K 

independent antennas over the SIMO channel ...[ ] 
* *

1 K
H = h , ,h . The matrix U* now acts as a 

multiuser receiver, which separates the data streams. We define the power allocation matrix 

P=diag[p]=diag[p1,p2,...,pK]. With the received signal y = H Pd + z , the i
th
 estimated signal 

becomes 

( )i
i

i

d
p



 *

i
u H Pd + z ,                                                       (12) 

and the normalized MSE is 

 2|| ||m

i i iE d d


  , 

2

( ) 1i

i i

ip


    * * * *

i w i i i i i
u HPH + R u u h h u ,           (13) 

where u Mq q *

w 0 0
R h h It . It can be observed that 1 2, ,...,m m m

K   can be optimized independently. 

Collecting all optimizers in a matrix mmseU
∼

, we have 

                                                         ( )* -1
mmse w

U = HPH + R HP
∼

,                                             (14) 

where diag U U β
∼

.  

Since  2|| ||m E d - d
∧

 

2| ( ||Fdiag 
-1

*

k
β) P U H P - I (( ) ( ))tr diag diag

-1 -1
*

w
β P U R U P β ,              (15)  

substituting (14) into (15), we obtain 
m  [ ( ) ]tr * -1

w w
R HPH + R +K-M .                                 (16)                                         

As a result, the optimization Problem 3 can be reformulated as 

Problem 4 

1 2

1

, , , 0
max ( [ ] )

Kp p p
tr 




...

*

w w
R HPH + R  

s.t. 
1

,
K

i t t u u

i

p P P q P q P


                         

This problem is convex with respect to the power allocation, so it can be easily solved by 

Lagrangian methods. Correspondingly, the Lagrangian function is 
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1 2 ..( , , , , ). KL p p p   1( [ ] )tr  *

w w
R HPH + R

1

( )
K

i

i

p P


  ,           (17) 

where   is the Lagrangian multiplier. 

The dual objective function of Problem 4 is    

                                                            
1 2

1 2
, ,..., 0

( ..) max ( , , , , ).
K

K
p p p

g L p p p 


 ，                        (18) 

since the Problem 4 is convex, it is equivalent to the following minimization problem: 

Problem 5   min ( )g


  

. . 0s t                                                                         

We propose an efficient algorithm called Iterative Power Allocation Algorithm to solve 

Problem 5 and outline it as follows: We choose an initial   and compute the value of g( ) in 

(18), then update   according to the descent direction of g( ). The process repeats until the 

algorithm converges. It is easy to observe that once   is fixed, the unique optimal set 

{p1,p2,...,pK}can be obtained via the gradient ascent algorithm. We next need to determine the 

optimal  . Since the Lagrangian function ( )g  is convex over  , the optimal  can be 

obtained via the one-dimensional search. However, because ( )g  is not necessarily 

differentiable, the gradient algorithm cannot be applied. Alternatively, the subgradient method 

can be used to find the optimal solution. According to [15], we can obtain that the subgradient 

of ( )g   is
1

K

ii
P p


 , where pi, i=1,...,K, are the corresponding optimal power allocation for 

a fixed  in (18), and  
t t u uP q P q P  . 

3.3 MAC to BC Dual Mapping 

According to the duality, although the quantities H, U,   in the MAC model are the same as 

those for the BC model, the power allocation may be different. In the following, we compute 

the BC power allocation vector q via the dual MAC power allocation vector p. 

Since the SINR in BC is given by  

1,

1

b i

i K

j i

j j i

q
SINR

q
 





* *

i i i i

* *

i j j

h u u h

h u u h

 ,                                           (19) 

 q is characterized by   

                                    1( ) 1
k

q
-1D -ψ  ,                                                    (20)  

where each component in ψ  is  

                                  
2| |

0

*

k i

ik

k i

k i


 
  

 

u h
,                                               (21)   

and                        

1

2 2
[ ,..., ]
| | | |

b b

KSINR SINR
diag

 
  

 
* *

1 1 K K

D
u h u h

.                            (22) 

The SINR in MAC is given by 

* *( + - )

m i

i

w i i i i

p
SINR 

* *

i i i i

*

i

u h h u

u HPH R p h h u
.                              (23)  

                           

Therefore, given the condition m b

i iSINR SINR , the BC power allocation vector q is able to 

be obtained through the dual MAC power allocation vector p.  
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3.4 A Complete Solution to the Problem of MMSE Transmit Optimization for CR 
MISO-BCMAC to BC  

In the former subsections, we proposed an efficient algorithm to solve Problem 3. We are now 

ready to present a complete algorithm to solve Problem 1.  

Since Problem 1 is equivalent to the following problem: 

,
min ( , )

t u
t u

q q
g q q ,   

                                                               s.t. 0tq   and 0uq  .                        

the remaining task is to determine the optimal
tq and

uq . Since ( , )t ug q q is not necessarily 

differentiable, the optimal
tq and

uq are searched via the subgradient algorithm. That is, in each 

iterative step, the vector [ , ]t uq q  is updated according to the subgradient direction 

1

[ , ( )]
K

t u

i

P P tr


  
K

* b b

0 i 0 i

i=1

h Q h Q of g(qt, qu), where b

i
Q ,i=1,...,K, are the corresponding optimal 

covariance matrices for the Problem 2 . We describe the Complete Iterative Algorithm to solve 

Problem 1 as follows： 

1). Initialization: (1) (1), , 1,t uq q n   

2). Repeat 

     2a) Find the optimal solution of the Problem 3 based on Iterative Power Allocation 

Algorithm; 

     2b) Find the solution of the Problem 2 via the MAC-to-BC mapping; 

     2c) Update ( )n

tq and ( )n

uq via the subgradient algorithm:  

( 1) ( )

1

( ),
K

n n

t t t

i

q q t P



   * b

0 i 0
h Q h  ( 1) ( )

1

( ( ) )
K

n n

u u u

i

q q t tr P



   b

i
Q , 

where t denotes the step size of subgradient algorithm; 

     2d) n=n+1 

3). Stop when  

( )

1

| ( ) |
K

n

t t

i

q P 


  * b

0 i 0
h Q h and ( )

1

| ( ( ) ) |
K

n

u u

i

q tr P 


  b

i
Q are satisfied 

simultaneously. 

As a summary, the flow chart of the complete algorithm is depicted in Fig. 3. 
(1) (1),t uq q

(1) (1) (1), ,p U 
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i, 1
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Fig. 3. The flow chart for the Complete Iterative Algorithm 

4. Simulation Results and Analysis 

In the simulation, the elements of h0, h1, h2,…,hK are independent and identically distributed 
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(i.i.d.) complex Gaussian variables with mean zero and variance one. We define the SNR of 

the unlicensed MU-MISO system as 2/uSNR P  . 

Example 1: In this simulation, we consider a CR MISO-BC system with K=3, M=4, and 

SNR=10dB. Fig. 4 shows the convergence of the proposed Complete Iterative Algorithm for 

randomly selected initial qt and qu. It can be seen from the figure that for different settings of 

initial qt and qu, convergence can be guaranteed. Fig. 5 shows the sum power at the SBS and 

the interference power at the PU with Pu=10w, Pt=1w. From the figure, we can see that the 

sum power and the interference power approach to 10w and 1w, respectively, at convergence. 

This implies that the Complete Iterative Algorithm converges to the optimal point, since the 

sum power and interference power constraints are satisfied with equalities when the algorithm 

converges.  
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Fig. 4. The convergence behavior of the Complete Iterative Algorithm 
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Fig. 5. The convergence behavior of the sum power at the BS and the interference at the PU for the 

Complete Iterative Algorithm 
Example 2: In this simulation, we compare the performance of the proposed CR 

MMSE-based linear scheme with the optimal DPC based method in terms of the achievable 

sum-rate. In Fig. 6, we fix the number of antennas at SBS at 4. From the figure, it can be 

observed that as the number of SUs decreases, the performance gap between the proposed 

scheme and the DPC scheme decreases. Especially, in the setting of M=4, K=2, the difference 

is less then 3%. While we fix the number of SUs at 2, the performance gap between the 

proposed CR MMSE-based linear scheme and the DPC-based nonlinear scheme increases 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 9, Sep. 2013                                 2130 

Copyright ⓒ 2013 KSII 

with the number of antennas at SBS increasing, as shown in Fig. 7. It is because with less SUs 

or less antennas at SBS, the multi-user interference becomes smaller so that the difference 

between MMSE-based linear precoding and DPC-based non-linear precoding tends to be 

negligible.  
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Fig. 6. Sum rate comparison for M=4, K=2, 3, 4 
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Fig. 7. Sum rate comparison for K=2, M=4, 5, 6 

Example 3: In Fig. 8, we compare the computation complexity of the proposed CR MMSE 

linear scheme with that of CR nonlinear DPC scheme. In this simulation, we focus on 

comparing the overall time consumption by the two schemes. From the figure, we can figure 

out that the proposed CR MMSE scheme is less time-consuming than CR DPC scheme, and 

with the number of SUs increasing, the gap increases. By jointly considering the performance 

comparison in Figs. 6 and 7, we can conclude that the proposed CR MMSE scheme is more 

feasible for practical applications.  
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Fig. 8. The comparison of computational complexity 

5. Conclusion 

In this paper, the problem of linear MMSE transmitter design for the CR MU-MISO-BC 

system is investigated. By applying equivalent conversion, a two-level iterative algorithm is 

proposed to solve the non-convex CR MISO-BC problem. Simulation results show that the 

proposed CR MMSE-based scheme can provide a suboptimal sum-rate performance with 

much lower computational complexity. In the future, the extension of the work to address the 

comparison to other  linear precoding schemes in MIMO systems will be considered.  
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