• 제목/요약/키워드: k-connected graph

검색결과 145건 처리시간 0.022초

AN OPTIMAL ALGORITHM FOR FINDING DETH-FIRST SPANNING TREE ON PERMUTATION GRAPHS

  • Mondal, Sukumar;Pal, Madhumangal;Pal, Tapan K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.727-734
    • /
    • 1999
  • Let G be a connected graph of n vertices. The problem of finding a depth-first spanning tree of G is to find a connected subgraph of G with the n vertices and n-1 edges by depth-first-search. in this paper we propose an O(n) time algorithm to solve this problem on permutation graphs.

THE DOMINATION COVER PEBBLING NUMBER OF SOME GRAPHS

  • Kim, Ju Young;Kim, Sung Sook
    • 충청수학회지
    • /
    • 제19권4호
    • /
    • pp.403-408
    • /
    • 2006
  • A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. The domination cover pebbling number ${\psi}(G)$ is the minimum number of pebbles required so that any initial configuration of pebbles can be transformed by a sequence of pebbling moves so that the set of vertices that contain pebbles forms a domination set of G. We determine the domination cover pebbling number for fans, fuses, and pseudo-star.

  • PDF

On Diameter, Cyclomatic Number and Inverse Degree of Chemical Graphs

  • Sharafdini, Reza;Ghalavand, Ali;Ashrafi, Ali Reza
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.467-475
    • /
    • 2020
  • Let G be a chemical graph with vertex set {v1, v1, …, vn} and degree sequence d(G) = (degG(v1), degG(v2), …, degG(vn)). The inverse degree, R(G) of G is defined as $R(G)={\sum{_{i=1}^{n}}}\;{\frac{1}{deg_G(v_i)}}$. The cyclomatic number of G is defined as γ = m - n + k, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, some upper bounds on the diameter of a chemical graph in terms of its inverse degree are given. We also obtain an ordering of connected chemical graphs with respect to the inverse degree.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

Consistent Triplets of Candidate Paralogs by Graph Clustering

  • Yun, Hwa-Seob;Muchnik, Ilya;Kulikowski, Casimir
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.156-160
    • /
    • 2005
  • We introduce a fully automatic clustering method to classier candidate paralog clusters from a set of protein sequences within one genome. A set of protein sequences is represented as a set of nodes, each represented by the amino acid sequence for a protein with the sequence similarities among them constituting a set of edges in a graph of protein relationships. We use graph-based clustering methods to identify structurally consistent sets of nodes which are strongly connected with each other. Our results are consistent with those from current leading systems such as COG/KOG and KEGG based on manual curation. All the results are viewable at http://www.cs.rutgers.edu/${\sim}$seabee.

  • PDF

The Existence of an Alternating Sign on a Spanning Tree of Graphs

  • Kim, Dongseok;Kwon, Young Soo;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.513-519
    • /
    • 2012
  • For a spanning tree T of a connected graph ${\Gamma}$ and for a labelling ${\phi}$: E(T) ${\rightarrow}$ {+,-},${\phi}$ is called an alternating sign on a spanning tree T of a graph ${\Gamma}$ if for any cotree edge $e{\in}E({\Gamma})-E(T)$, the unique path in T joining both end vertices of e has alternating signs. In the present article, we prove that any graph has a spanning tree T and an alternating sign on T.

On the Metric Dimension of Corona Product of a Graph with K1

  • Mohsen Jannesari
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.123-129
    • /
    • 2023
  • For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the k-vector r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum cardinality is a basis of G. The corona product, G ⊙ H of graphs G and H is obtained by taking one copy of G and n(G) copies of H, and by joining each vertex of the ith copy of H to the ith vertex of G. In this paper, we obtain bounds for dim(G ⊙ K1), characterize all graphs G with dim(G ⊙ K1) = dim(G), and prove that dim(G ⊙ K1) = n - 1 if and only if G is the complete graph Kn or the star graph K1,n-1.

SOME PROPERTIES ON f-EDGE COVERED CRITICAL GRAPHS

  • Wang, Jihui;Hou, Jianfeng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.357-366
    • /
    • 2007
  • Let G(V, E) be a simple graph, and let f be an integer function on V with $1{\leq}f(v){\leq}d(v)$ to each vertex $v{\in}V$. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex $v{\in}V$ at least f(v) times. The f-edge cover chromatic index of G, denoted by ${\chi}'_{fc}(G)$, is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has an f-edge cover chromatic index equal to ${\delta}_f\;or\;{\delta}_f-1,\;where\;{\delta}_f{=}^{min}_{v{\in}V}\{\lfloor\frac{d(v)}{f(v)}\rfloor\}$. Let G be a connected and not complete graph with ${\chi}'_{fc}(G)={\delta}_f-1$, if for each $u,\;v{\in}V\;and\;e=uv{\nin}E$, we have ${\chi}'_{fc}(G+e)>{\chi}'_{fc}(G)$, then G is called an f-edge covered critical graph. In this paper, some properties on f-edge covered critical graph are discussed. It is proved that if G is an f-edge covered critical graph, then for each $u,\;v{\in}V\;and\;e=uv{\nin}E$ there exists $w{\in}\{u,v\}\;with\;d(w)\leq{\delta}_f(f(w)+1)-2$ such that w is adjacent to at least $d(w)-{\delta}_f+1$ vertices which are all ${\delta}_f-vertex$ in G.

DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF STRONG PRODUCT OF TWO GRAPHS

  • Alikhani, Saeid;Soltani, Samaneh
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.645-651
    • /
    • 2020
  • The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. The strong product G ☒ H of two graphs G and H is the graph with vertex set V (G) × V (H) and edge set {{(x1, x2),(y1, y2)}|xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ 2.}. In this paper we study the distinguishing number and the distinguishing index of strong product of two graphs. We prove that for every k ≥ 2, the k-th strong power of a connected S-thin graph G has distinguishing index equal two.