Consistent Triplets of Candidate Paralogs by Graph Clustering
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ABSTRACT: We introduce a fully automatic clustering
method to classify candidate paralog clusters from a set of
protein sequences within one genome. A set of protein
sequences is represented as a set of nodes, each represented
by the amino acid sequence for a protein with the sequence
similarities among them constituting a set of edges in a graph
of protein relationships. We use graph-based clustering
methods to identify structurally consistent sets of nodes
which are strongly connected with each other. Our results are
consistent with those from current leading systems such as
COG/KOG and KEGG based on manual curation. All the
results are viewable at http://www.cs.rutgers.edu/~seabee.

1 INTRODUCION

A paralog is one of a set of homologous genes that have
diverged from each other as a consequence of gene
duplication, in contrast to an ortholog which is a gene
connected by vertical evolutionary descent to another.
Typically, orthologs perform the same function in different
species, while paralogs often acquire new finctions even
though they are found within the same species [21].

There are many ways of defining similarities between
pairs of protein sequences [2][3][5][6][7][8], but only a few
systematic procedures to classify groups of paralogous
proteins [9][22]. The recent proliferation of full genome scale
sequencing data over many organisms makes such homolog
searching in complete genomes increasingly more pressing
[12][14][15][19]. By clustering families of paralogous
proteins in a genome, matching a newly discovered protein
sequence to one of the well-annotated and curated families
provides information about the unknown protein and helps
predict its function [16][18].

This is more accurate than comparing the new sequence to
individual proteins in a database because protein families
reflect evolutionary relationships where function often
follows family lines [17][20]. Automatically identifying
candidate paralog clusters, we can help filter them out, which
would be valuable when building orthologous groups of
proteins across species as in KEGG [9].

The next section introduces our novel method of finding
candidate paralog clusters from amino acid sequence
information only for either complete or incomplete genomes.

2 METHODS

Our method finds all the possible candidate paralog clusters
from a given set of sequences as long as they are from the
same genome. There are, however, advantages of knowing
the complete genome sequence. When all known annotations
have been applied to sequences in a complete set. Those that

remain unannotated can be identified and set aside for further
analysis and prediction. Since increasingly comprehensive
genomic level comparison across different organisms is
possible with complete sequencing of many genomes,
peculiarities and novelties in each organism can be studied
systematically [11].

2.1 Input data and preprocessing

Starting with a set of protein sequences from one complete
(or incomplete) genome, we BLAST ([1] all-against-all to
check similarities. If these are above a given threshold, then a
graph is generated between two nodes representing the
proteins. The better score is taken from the asymmetric
BLAST scores for a pair of proteins so as to obtain an
undirected edge. With this set of weighted edges and nodes,
an initial graph of gene similarities (Gs) is created. BLAST is
used for this preprocessing because of its speed and universal
acceptance and availability.

2.2 Consistent triplets (CTs) and their clusters

From the initial graph of gene similarities (Gs) one can then
extract a subgraph (Gr) where all nodes and edges are
members of at least one triplet comprising three protein
sequences closely related to each other. Since gene similarity
does not guarantee transitivity, each pair of nodes in a triplet
has to have its sequence alignment information from BLAST
results checked for consistency. When the three pairwise
alignments in a triplet have overlapping segments longer than
some threshold, we can say that a consistent triplet has been
found. A new subgraph (G¢) can then be constructed from
these consistent triplets.

We define a cluster of consistent triplets as a CT-cluster
when all nodes in the cluster have more than a certain
number of other triplets connected to it, and it is the largest
possible set of nodes in G¢. CT-clusters can be defined by
thresholds and combinatorial conditions, relevant to system
decomposition, but definition-based procedures for finding
CT-clusters are inefficient, requiring much search, while
predefining the thresholds requires an expert intervention.

2.3 Cluster-maximizer

If W is a set of nodes in G and #(i, H) denotes the number of
consistent triplets related to a node i in the subset of nodes H
(i € Hc W, |H = 3), then a connected component H*
maximizer is defined by the maxmin equation:

* . .
H*=arg rl-?eaZ)"g e #(i, H) 0))

|H]23

H* extracts a CT-cluster from a set of genes /. With many
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advantages over threshold-based CT-clustering methods, the
cluster-maximizer approach starts from a triplet of nodes and
always checks the connectivity among the components.
Threshold-based clustering requires predefined thresholds
which require manual curation [13], where the cluster-
maximizer automatically yields a threshold from the maxmin
conditions. Every node in a CT-cluster has an equal or larger
number of consistent triplets, and the largest CT-cluster
found by H* is also a connected component. The largest
subset which is not a connected component but satisfies the
given maxmin condition, forms a union of a small number of
connected components maximizers, and is unique.

For each connected component in G, we find the
cluster-maximizer and remove the nodes included in this H*.
This process is iterated over the remaining subset of nodes
until no more consistent triplets are found. The known
threshold-based procedure to find such clusters has an
exponential complexity, but our cluster-maximizer enables a
cluster to be found by a polynomial algorithm. The
complexity of this polynomial algorithm is O(m-n*) where m
is the number of connected components (each edge of which
belongs in at least one consistent triplet) and » is the number
of nodes in the largest connected component.

2.4 Quasi-concave set function

There are two major theoretical foundations for the above
procedure: one is monotonicity of the 7 function and the
other is the choice of a quasi-concave set function for H*.
The monotonicity of the 7 function simply means the number
of consistent triplets increases or remains the same if larger
sets of nodes are considered:

Vie Hc H', a(i, H) < n(i, H') V)

Proof of all of the above is based on the property of the
chosen criterion:

F(H) = min (i, H)
VH, Hy: 3
F(H, © Hy) = min {F(H,), F(H,)}.

where F(H) is a quasi-concave set function, which can be
found in /7* [10].

3 RESULTS

3.1 CT-clustering vs. COG/KOG

We tested our consistent triplet (CT) clustering approach by
running it over the same input data sets that COG/KOG [22]
used. Organisms in COG have generally short sequences
compared to those of KOG thus procedures for the entire
computation were executed in relatively short periods of time
with a generous E-value threshold of 107" for BLAST. KOG
has more advanced and complex organisms with longer
protein sequences, so CT-clustering has to be done with the
stronger E-value threshold such as 10 to cut down the
overall data needing computation. Total size of these data
sets (66 organisms from COG and 7 from KOG) involves
over 111 millions amino acids.

Three unicellular organisms (Schizosaccharomyces pombe,

Saccharomyces cerevisiae, and Encephalitozoon cuniculi)
appear in both COG and KOG but CT-clustering was used
separately with different thresholds, so they are treated
separately as presented in COG/KOG. Table 1 shows the
basic statistical results of CT-clustering coverage over
COG/KOG.

COG KOG
Total number of sequences 168,160 112, 920
Clustering coverage 21.9% 27.7%
Number of CT-clusters 1,171 5,242
Homogeneous CT-clusters 4,843 4,588
Homogeneity 67.5% 87.5%

Table 1: CT-clustering over COG/KOG data sets.

To investigate the relationship between the CT-clustering
coverage and the size of a CT-cluster, its coverage is plotted
against the average size of CT-clusters for each organism
from a COG and a KOG.
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Figure 1: CT-clustering coverage vs. average size
of CT-clusters in 66 organisms from COG.
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Figure 2: CT-clustering coverage vs. average size
of CT-clusters in all 7 organisms from KOG

ath = Arabidopsis thaliana

cel = Caenorhabditis elegans

dme = Drosophila melanogaster
hsa = Homo sapiens

sce = Saccharomyces cerevisiae
spo = Schizosaccharomyces pombe
ecu = Encephalitozoon cuniculi

Figure 1 shows 66 unicellular organisms in COG divided by
their 8 predefined groups: Archaea, Eukaryota, Bacteria,
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Actino bacteria, Gram plus, gamma, Proteobacteria, alpha.
Figure 2 plots the CT-clustering coverage of the 7 eukaryotes
in KOG with its 3-letter codes. As these two scatter plots
show, the more sequences covered by CT-clusters, the larger
the size of CT-clusters.

If there are more sequences in a genome, we expect to
have more coverage of clustering than for a genome with
fewer sequences, but if we take a look at the results of
CT-clustering over KOG, several interesting points arise.
First of all, the largest genome in KOG is Homo sapiens with
38,638 sequences and the second is Arabidopsis thaliana with
26,406 sequences, but CT-clustering over Arabidopsis
thaliana produced more candidates of paralogous proteins
than that of Homo sapiens: 12,097 sequences (45.8% of
26,406) compared to 9,842 sequences (25.5% of 38,638).
This coverage over Homo sapiens is surpassed by the third
largest genome in KOG (Caenorhabditis elegans) which has
5,829 sequences covered by CT-clustering for 28.1% of
20,751 sequences from its genome. Thus, simply because
there are more sequences in a genome, it does not mean it is
going to have more paralogs. Plants are known for having
many paralogous relations, which shows up in this
CT-clustering over KOG.

The larger average size of CT-clusters means more than
average CT-clustering coverage. It means there are even
stronger paralogous relations in those CT-clusters than the
smaller ones because a CT-cluster is not an ordinary cluster
of sequences but each sequence in it must have at least two
other sequences connected by the triplet consistency.
Therefore, as the average size of CT-clusters increases with
its CT-clustering coverage in a given genome, we can
assume that a higher level of paralogy exists in that genome.

Next, taking a closer look at the size of CT-clusters in
various organisms, we need to divide CT-clusters in two
groups: one is a group of minimum triplets having only three
sequences in them, and the other is a group of CT-clusters
with four or more sequences with triplet consistency. In this
way, we can clearly see which organisms have small
CT-clusters as their majority suggests fewer level of

paralogy.
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Figure 3: Ratio of 3-node CT-clusters to 4
or larger ones in 66 organisms from COG.

The larger number of small CT-clusters in COG organisms is
discovered within the group of Proteobacteria as shown in
Figure 3, where 56.5% of CT-clusters within this group have
only three protein sequences as paralogs. In other words,

sequences in Proteobacteria do not have many paralogs
within their genome, which is consistent with the small
coverage of overall CT-clustering in this Proteobacteria
group as seen in Figure 1. There are 6 organisms in this
group, of which five (Neisseria meningitidis MC58,
Neisseria meningitidis Z2491, Helicobacter pylori 26695,
Helicobacter pylori J99, and Campylobacter jejuni) have less
than 10% coverage.
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Figure 4: Ratio of 3-node CT-clusters to 4
or larger ones in 7 organisms from KOG.

These results are also consistent with those of CT-clustering
over the seven organisms from KOG. Three unicellular
eukaryotes (Saccharomyces cerevisiae, Encephalitozoon
cuniculi, and Schizosaccharomyces pombe) have a relatively
large number of small CT-clusters (more than 45% of all
CT-clusters found in them as shown in Figure 4), all with less
than 13% of CT-clustering coverage as shown in Figure 2.
On the other hand, the other four more complex organisms
(Arabidopsis thaliana, Caenorhabditis elegans, Drosophila
melanogaster, and Homo sapiens) have less than 40% of
small CT-clusters and their coverage is higher than those of
the three simple eukaryotes. Arabidopsis thaliana has the
least proportion (34.44%) of small CT-clusters and the most
CT-clustering coverage (45.8%).

3.2 CT-clustering vs. KEGG

CT-clustering and KEGG share much in common, starting
from a graph of gene similarities among nodes. We compared
the clustering results of these two different methods over the
sets of proteins from the same organism, Homo sapiens.
Table 2 summarizes the principle statistical results for the
two clustering methods.

Proteins from Homo sapiens CT-clustering KEGG
Total number of sequences 12,921 11,667
Total number of clusters 2,048 1,989
Average size of clusters 6.3 5.8
Standard deviation 114 17.7
Homogeneous clusters 677 1,028
Homogeneity of clusters 33.1% 51.7%

Table 2: Comparison of results of two clustering methods.

We used 38,638 protein sequences from NCBI as input for
CT-clustering while KEGG used 23,504 protein sequences as
its input. However, the number of sequences covered by each
clustering method is more similar: 12,921 and 11,667
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sequences for CT-clustering and KEGG respectively. The
total numbers of clusters are also close to each other: 2,048
clusters for CT-clustering and 1,989 clusters for KEGG. Thus
the average sizes of clusters contain around 6 sequences per
cluster for both methods but the standard deviation over the
size of clusters for KEGG is much larger than that of
CT-clustering, suggesting that CT-clustering leads to a more
homogeneous distribution of clustering in terms of cluster
size.
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Figure 5: Distribution of the size of a cluster in
two graph clustering methods of Homo sapiens.

Figure 5 shows the majority of clusters having two to five
sequences in them: 1,408 clusters for CT-clustering (68.8%)
and 1,597 clusters for KEGG (80.3%). The last two lines of
Table 2 reveal an interesting relationship of these two
clustering methods. Each of 677 clusters by CT-clustering
has the same KEGG cluster IDs, and each of 1,028 clusters
from KEGG is identified by the same CT-clusters. In most
cases, KEGG clusters are identified as one CT-cluster or
divided into two CT-clusters (90.1%), where CT-clusters are
about the same (92.6%).
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Figure 6: Consistency of CT-clusters verified by KEGG..
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Figure 7: Consistency of KEGG clusters verified by CT-
clustering method.

However, there are significant differences in this: as
shown in Figures 6 and 7, there are more KEGG clusters

having one CT-cluster ID in them than two, but in the case of
CT-clusters, the opposite occurs. In CT-clustering, not only
there are more clusters having two KEGG IDs in them, but
there can also be more, with up to six KEGG cluster IDs
found in a single CT-cluster. Only two out of 2,048 clusters
have five or six KEGG cluster IDs, and all the other clusters
have a diversity of four or less. CT-clusters fit into KEGG
better with higher homogeneity.

As shown in Figure 7, there is one case where a KEGG
cluster has 46 CT-clusters in it, and as shown in Figure 6, the
maximum number of different KEGG clusters in any
CT-cluster is six. This suggests that the CT-clustering method
has extracted stronger clusters than KEGG does, which is
also supported by the fact that CT-clustering starts from
consistent triplets as a basic building block of its clusters.
This consistent triplet has not only a high sequence similarity
score but also strong structural consistency checked by
overlapping alignment regions. On the other hand, KEGG
takes a quasi-clique as its cluster from a graph of
protein-nodes where edges are produced by pairwise
sequence similarity scores only.

4 CONCLUSIONS

Consistent triplet clustering (CT-clustering) results have been
shown to give fast and robust clustering results. This
procedure is fully automatic, not requiring any human
intervention during the entire process. It uses a monotone
linkage function as its criterion to extract unique consistent
triplets from a set of elements which have interrelationships
with one another.

To verify its performance, CT-clustering was tested on
whole genome data sets: from organisms collected in COG
and KOG. To find paralogs from the given sets of sequences,
no expensive multialignment was required. Instead, the
pairwise sequence alignment software from BLAST was
used to find similarities among protein sequences, from
which consistent triplets of sequences are found. Using a
quasi-concave set function, a core within the group of
consistent friplets is extracted as a CT-cluster. All these
results are available at http://www.cs.rutgers.edu/~seabee.

CT-clustering is based on transitivity of similarities among
three structural objects, thus the members in its cluster share
stronger homogeneity than other clustering methods which
does not consider structural consistency. This is proven in our
comparative studies with COG/KOG and KEGG by higher
homogeneity of CT-clusters. Clustering results from KEGG
share many similarities with those of CT-clustering since
both of them are based on graph-theoretical methods.
Nevertheless, CT-clustering showed stronger homogeneity
over the same data set (Homo sapiens) because KEGG does
not take into account the structural consistency of sequence
alignments. CT-clustering was also able to capture the degree
of paralogy in organisms by the ratio of large to small
CT-clusters in them.

Just as COG extended its genome sets into KOG, more
new genome data will be shortly produced and available for
extensive study. CT-clustering can adapt to this constantly
growing pool of genes and produce new CT-clustering results
for them. To efficiently perform this routine work, the data
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sets need to be stored and managed in a database. So, web
reports can be dynamically generated to users’ different
needs, with a web interface to submit sets of sequences from
new genomes to perform their own analyses. With such a
new web interface, a set of sequences, raw results, or even
the CT-clustering method itself can be directly downloaded
to users, so that they can compute their own CT-clustering
locally with their own computing resources.

In parallel, we are working to extend our comparative
study with KEGG. Currently, CT-clustering of Homo sapiens
is the only one we have compared with KEGG’s results.
There are far more organisms they cover which can be of
interest. COG and KOG clustering results can also be
compared with newly calculated CT-clusterings with
different thresholds. For example, one could find the point
where CT-clustering coverage becomes approximately the
same as COG or KOG with more relaxed thresholds.
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