• Title/Summary/Keyword: k-Bessel functions

Search Result 73, Processing Time 0.022 seconds

SOME FINITE INTEGRALS INVOLVING THE PRODUCT OF BESSEL FUNCTION WITH JACOBI AND LAGUERRE POLYNOMIALS

  • Ghayasuddin, Mohd;Khan, Nabiullah;Khan, Shorab Wali
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.1013-1024
    • /
    • 2018
  • The main object of this paper is to set up two (conceivably) valuable double integrals including the multiplication of Bessel function with Jacobi and Laguerre polynomials, which are given in terms of Srivastava and Daoust functions. By virtue of the most broad nature of the function included therein, our primary findings are equipped for yielding an extensive number of (presumably new) fascinating and helpful results involving orthogonal polynomials, Whittaker functions, sine and cosine functions.

On Bessel's and Grüss Inequalities for Orthonormal Families in 2-Inner Product Spaces and Applications

  • Dragomir, Sever Silverstru;Cho, Yeol-Je;Kim, Seong-Sik;Kim, Young-Ho
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.207-222
    • /
    • 2008
  • A new counterpart of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces is obtained. Applications for some Gr$\"{u}$ss inequality for determinantal integral inequalities are also provided.

THE INCOMPLETE LAURICELLA AND FIRST APPELL FUNCTIONS AND ASSOCIATED PROPERTIES

  • Choi, Junesang;Parmar, Rakesh K.;Chopra, Purnima
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.531-542
    • /
    • 2014
  • Recently, Srivastava et al. [18] introduced the incomplete Pochhammer symbol and studied some fundamental properties and characteristics of a family of potentially useful incomplete hypergeometric functions. Here we introduce the incomplete Lauricella function ${\gamma}_D^{(n)}$ and ${\Gamma}_D^{(n)}$ of n variables, and investigate certain properties of the incomplete Lauricella functions, for example, their various integral representations, differential formula and recurrence relation, in a rather systematic manner. Some interesting special cases of our main results are also considered.

Serendipitous Functional Relations Deducible from Certain Generalized Triple Hypergeometric Functions

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.109-136
    • /
    • 2012
  • We aim at presenting certain unexpected functional relations among various hypergeometric functions of one or several variables (for example, see the identities in Corollary 5) by making use of Carlson's method employed in his work (Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2)(1970), 232-242).

CERTAIN UNIFIED INTEGRALS INVOLVING PRODUCT OF GENERALIZED k-BESSEL FUNCTION AND GENERAL CLASS OF POLYNOMIALS

  • Menaria, N.;Parmar, R.K.;Purohit, S.D.;Nisar, K.S.
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.349-361
    • /
    • 2017
  • By means of the Oberhettinger integral, certain generalized integral formulae involving product of generalized k-Bessel function $w^{{\gamma},{\alpha}}_{k,v,b,c}(z)$ and general class of polynomials $S^m_n[x]$ are derived, the results of which are expressed in terms of the generalized Wright hypergeometric functions. Several new results are also obtained from the integrals presented in this paper.

SOME NEW RESULTS RELATED TO BESSEL AND GRUSS INEQUALITIES IN 2-INNER PRODUCT SPACES AND APPLICATIONS

  • DRAGOMIR S.S.;CHO, Y.J.;KIM, S.S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.591-608
    • /
    • 2005
  • Some new reverses of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces are pointed out. Applications for some Gruss type inequalities and for determinantal integral inequalities are given as well.

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P.;Suthar, D.L.;Tadesse, Hagos;Habenom, Haile
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.167-181
    • /
    • 2021
  • In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

ESTIMATION OF A MODIFIED INTEGRAL ASSOCIATED WITH A SPECIAL FUNCTION KERNEL OF FOX'S H-FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf Qasem
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.125-136
    • /
    • 2020
  • In this article, we discuss classes of generalized functions for certain modified integral operator of Bessel-type involving Fox's H-function kernel. We employ a known differentiation formula of Fox's H-function to obtain the definition and properties of the distributional modified Bessel-type integral. Further, we derive a smoothness theorem for its kernel in a complete countably multi-normed space. On the other hand, using an appropriate class of convolution products, we derive axioms and establish spaces of modified Boehmians which are generalized distributions. On the defined spaces, we introduce addition, convolution, differentiation and scalar multiplication and further properties of the extended integral.

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

  • Arshad, Muhammad;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.143-155
    • /
    • 2018
  • In this present paper, our aim is to introduce an extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ which is established with the help of the extended beta function. Also, we investigate certain integral transforms and generalized integration formulas for the newly defined extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ and the obtained results are expressed in terms of Fox-Wright function. Some interesting special cases involving an extended Mittag-Leffler functions are deduced.

NORMALIZED DINI FUNCTIONS CONNECTED WITH k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS

  • ECE, SADETTIN;EKER, SEVTAP SUMER;SEKER, BILAL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.717-723
    • /
    • 2021
  • The purpose of the present paper is to give sufficient conditions for normalized Dini function which is the special combination of the generalized Bessel function of first kind to be in the classes k-starlike functions and k-uniformly convex functions.