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SOME NEW RESULTS RELATED TO BESSEL
AND GRUSS INEQUALITIES IN 2-INNER
PRODUCT SPACES AND APPLICATIONS

S. S. DRAGOMIR, Y. J. CHO, AND S. S. Kim

ABSTRACT. Some new reverses of Bessel’s inequality for orthonor-
mal families in real or complex 2-inner product spaces are pointed
out. Applications for some Griiss type inequalities and for deter-
minantal integral inequalities are given as well.

1. Introduction

The concepts of 2-inner products and 2-inner product spaces have
been intensively studied by many authors in the last three decades. A
systematic presentation of the recent results related to the theory of 2-
inner product spaces as well as an extensive list of the related references
can be found in [1]. Here we give the basic definitions and the elementary
properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field
K = R of real numbers or the field K = C of complex numbers. Suppose
that (-,-|-) is a K-valued function defined on X x X x X satisfying the
following conditions:

(21;) (z,z|z) > 0 and (z,z|z) = 0 if and only if z and 2 are linearly
dependent,

(22) (z,2|2) = (2, 2l2),

(2L3) (y,z|2) = (2,yl2),

(214) (az,y|z) = a(z,y|z) for any scalar a € K,

@2L) (z+2',ylz) = (z,yl2) + (', y]2).
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(-,-]-) is called a 2-inner product on X and (X, (-,-]-)) is called a 2-
inner product space (or 2-pre-Hilbert space). Some basic properties of
2-inner product spaces can be immediately obtained as follows [2]:

(1) If K = R, then (2I3) reduces to

(v,zl2) = (2,yl2)-
(2) From (213) and (214), we have
(0,912) =0, (2,0[2) =0
and also
(1.1) (z, ay|z) = a(z, y|z).
(3) Using (2I5)—(2I5), we have
(2,2|z £ y) = (z Ly, 2 2 yl2) = (z,2l2) + (y,yl2) £ 2Re(, y]2)

and
1
(1.2) Re(z,yl2) = 7 [(z, 2le +y) = (2, 2]z — y)].
In the real case K = R, (1.2) reduces to
1
(1.3) (z,912) = 7 [(z 21w +y) = (2, 2]z — y)]

and, using this formula, it is easy to see that, for any o € R,
(1.4) (,ylaz) = o*(z, yl2).

In the complex case, using (1.1) and (1.2), we have

' . 1 . .
Im(z,y|2) = Re[-i(z, y|2)] = 7((z, 2|z + iy) — (=, 2|z — )],
which, in combination with (1.2), yields
(1.5)
1 1 . ,
(@,912) = 7 (2.2l +y) = (2 2le = y)] + 7[(z, 2|z + i) = (2, 2]z — )]
Using the above formula and (1.1), we have, for any a € C,
(1.6) (,ylaz) = |af*(z,yl2).
However, for a € R, (1.6) reduces to (1.4). Also, from (1.6) it follows
that
(z,910) = 0.

(4) For any three given vectors z,y,z € X, consider the vector u =

(y,y|2)z—(z,y|2)y. By (211), we know that (u,u|z) > 0 with the equality
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if and only if u and z are linearly dependent. The inequality (u,u[z) > 0
can be rewritten as

(1.7) (v, 912) [(z,212) (v, yl2) — |(z, 9l2)I*] 2 0.
For z = 2, (1.7) becomes

—(y,92)|(z,912)]> 2 6,
which implies that

(1.8) (2,9l2) = (y,22) =0
provided y and z are linearly independent. Obviously, when y and z are
linearly dependent, (1.8) holds too. Thus (1.8) is true for any two vectors

y,2 € X. Now, if y and 2 are linearly independent, then (y,y|z) > 0 and,
from (1.7), it follows that

(1.9) (2, y|2)* < (z,2]2)(y, yl2)-

Using (1.8), it is easy to check that (1.9) is trivially fulfilled when y and

z are linearly dependent. Therefore, the inequality (1.9) holds for any

three vectors z,y, z € X and is strict unless the vectors u = (y,y[2)z —
" (,y|z)y and z are linearly dependent. In fact, we have the equality in

(1.9) if and only if the three vectors z,y and 2 are linearly dependent.

In any given 2-inner product space (X, (-,-|-)), we can define a func-
tion || |-}l on X x X by

(1.10) lzlz] = v/(z, z]2)

forall z,z € X.
It is easy to see that this function satisfies the following conditions:

(2Ny) ||lz|2|| > 0 and ||z|2| = 0 if and only if  and z are linearly depen-
dent,

(2N2) |lzlz)| = |||=]),

(2N3) |laz|z|| = |a|||z|z| for any scalar o € K,

(2Ng) ||z + 2'|2]| < |l=lzl| + [1<”]=]]-

Any function || - | - || defined on X x X and satisfying the conditions
(2N1)-(2N,) is called a 2-norm on X and (X, || -|-||) is called a linear 2-
normed space [5]. Whenever a 2-inner product space (X, (;, -|-)) is given,
we consider it as a linear 2-normed space (X, || - | - ||) with the 2-norm
defined by (1.10).

Let (X;(-,-])) be a 2-inner product space over the real or complex
number field K. If (f;);<;<, are linearly independent vectors in the
2-inner product space X, “and, for a given z € X, (fi, fj|2) = dy; for all
i,j € {1,...,n}, where &;; is the Kronecker delta (we say that the family
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(fi)1<i<n 18 z-orthonormal), then the following inequality is the corre-
sponding Bessel’s inequality (see for example [2]) for the z-orthonormal
family (fi),<i<y, in the 2-inner product space (X; (-, -}-)):

n

(1.12) 3 I, fil2)]? < |lzl2)?

i=1

for any x € X. For more details on this inequality, see the recent paper
[2] and the references therein.

The following reverse of Bessel’s inequality in 2-inner product spaces
has been obtained in [4]:

THEOREM 1. Let {e;};c; be a family of z-orthonormal vectors in X
and F a finite part of I, ¢;,®; (i € F) real or complex numbers and
z,z € X be so that either

(i) Re (Yicp Biei — 2,2 — Yiep dieilz) 2 0
or, equivalently,

1
(ii) ||9ﬂ — 2ieF %ﬂeﬂzu <3 (ZieF |®: — ¢i|2> ’
holds. Then we have the inequality:

0< Jlzfzl® = Y Iz, eil2)l”

ieF
1 2
<3 Z |®; — ¢5|” — Re (Z Qie; —x, T — Z¢ieilz>
E€F el =3
1 2
(S Zzléz_@l ) .
ieF

The constant Zi is best possible.

The following different reverse of Bessel’s inequality has been ob-
tained in [3].

THEOREM 2. Let {e;},.; be a family of z-orthonormal vectors in X,
F a finite part of I, ¢;, ®; (i € I) real or complex numbers. For z € X,
if either (i) or (ii) from Theorem 1 holds, then the following reverse of
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Bessel’s inequality

0 < Jlalel® = Y I(aexfo)]?

ieF
i+ @ 2
_4Z|¢ -’ = L + — (z,€il2)
el el
1
(s 721~ @lz)
ieF

is valid. The constant %1 is best possible.

The main aim of the present paper is to establish a different reverse
inequality for (1.11) than those incorporated in the above two theorems.
Some companion results and applications for determinantal integral in-
equalities are also given.

2. A new reverse of Bessel’s inequality

The following reverse of Bessel’s inequality holds.

THEOREM 3. Let {e;},c; be a family of z-orthonormal vectors in X,
F a finite part of I and ¢;, ®; (i € F) real or complex numbers such that
> icr Re (®igi) > 0. If x € X is such that either

(i) Re (ZieF Die; — T, T — Y icp ¢ie¢|z) >0
or, equivalently,
1
(ii) H"I" - ZzeF Mel}z” < ( i€F ‘(I)l - ¢i‘2>2
holds, then one has the mequahty

1 ®; + ¢;
R s es MR
i€F ' ’ i€F

The constant i- is best possible in the sense that it cannot be replaced
by a smaller constant.

Proof. Firstly, we observe that, for y,a,A € X, the following are
equivalent

(2.2) Re(A-y,y—alz) 20
and

a+ A
(23) v - 2521 < 14—k,
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Now, for a = Y icr die; and A =3, ®ie;, we have

14— alz] = Y (i - ¢4 eilz

icF

> (@ —¢i)eilz

LIlieF

2r
= | 1@ - ¢il? He¢|21|2>

ieF

= (D 1@ - ¢i|2) ,

ieF

N

»=

which gives, for y = z, the desired equivalence. On the other hand, we
have the identity

Re (Z e, — 1,1~ Z¢ie¢|z)

i€F i€F
= ZRe [@i(x,edz) +?¢_S;(:c,e,~|z)] - I[av|z||2 - ZRe (‘D,E) ,
icF icF
which gives, from (i), that
24)  llzfel® + Y Re (8:5) < 3 Re[0:(z,eil2) + i (3, eil2)]
ieF i€l

Utilizing the elementary inequality
1
Oép2+ aqz 2 2pq, a > Oa D, q 2 0’

we deduce

2
=]l ’

[ZzEF € ( 1¢l)]
Dividing (2.4) by [3;cr Re (®i¢:)] 3> 0and using (2.5), we obtain

lale]] < 1 2icr Re [q’i(ﬂ%@ilz)Jr@(m,eil@]
VA -

13 ,crRe [(Bi + &) (z, )]
2 [SierRe(2:3)]?

(2.5) 2||z|zll <

+ | S Re (9:)
i€eF

[N
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since it is obvious that
Re [@i(x,ei|z)] = Re [®; (z,€il2)] .

Note that (2.6) is also an interesting inequality in itself.
Utilizing the Cauchy-Bunyakovsky-Schwarz inequality for real num-
bers, we get

S Re (@ + 5) (2, e4l2)]

ieF
< Z| i+ &) (z,€i2)|
ieF
27) < (1% + 64l) @ eil2)
el
> 1@+ il [Z]@&VW}.
i€F ieF

Making use of (2.6) and (2.7), we deduce the desired result (2.1).

To prove the sharpness of the constant 7, let us assume that (2.1)
holds with a constant ¢ > 0, i.e.,

Z F! z+¢z
(2.8) |]:c|z||2 <. =€ [(x ezlz
Srcr Re (8.6 2

provided z, ¢;, ®; (i € F') satisfy (i).

Suppose that F' = {1},e1 =¢,|le]z|| = 1,21 =@ > 0,91 = ¢ > 0. If
we choose x = ®e, then the condition (i) holds true and, by (2.8), for
F = {1}, we get

(®+¢)°
o4

ie., ®¢ < c(® + ¢)? for any ®,¢ > 0. Now, if we choose ® =1+¢,¢ =
1 — ¢ with € € (0,1) in the last inequality and make ¢ — 0+, then we
get ¢ > % and so the proof is completed. U

P <ec- P2,

REMARK 1. By the use of (2.6), the second inequality in (2.7) and
the Hélder inequality, we may state the following reverses of Bessel’s
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inequality as well:
1

1

2 [SierRe (8:97)]

( rgaﬁx{lqnmil} 2 (=, eil2)|
z i€l

2]l <

—
0o
N}

~—

-

X

= i+ ar] % (Sieedr)’,

1 1_
for p > 1, 5 5_1’

-

max |(z, eilz)] 3 [P + ¢4l -
i€F icF

\
The following corollary holds.
COROLLARY 1. With the assumption of Theorem 3 and, if either (i)
or (ii) holds, then

2.10) 0 < ||z|z||*= z, ez 12@@ ¢Z T, €|z
(2.10) [|z|z]| ;l |2)* < SIS, Re(@3) Zl |2)%.

The constant % is best possible.

Proof. The inequality (2.10) follows by (2.1) on subtracting the same
quantity > .. |(z, ei|z)|* from both sides.

The best constant may be shown in a similar way to the one in the
above Theorem 3 and we omit the details. O

REMARK 2. If {e;};.; is an 2-orthonormal family in the real 2-inner
product space (X; (-,+])) and M;,m; € R, i € F (F is a finite part of I)
and z € X are such that M;, m; > 0 for ¢ € F with ZleFMm1 > 0 and

(Z Me; —z,x — Zmieﬂz) >0,

ieF ieF
then we have the inequality
2 2
0< Jlzlzl —Z[(w,ez-IZ)]

ieF
(2.11)

1 Y. cp(M;—my
< . 1€F ’L
=4 S M, Z[ z,el2)]”

The constant % is best possible.
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The following reverse of the Schwarz’s inequality in 2-inner product
spaces holds.

COROLLARY 2. Let z,y € X and §,A € K (K=C,R) with the
property that Re (Aé) > 0. If either

(2.12) Re (Ay —z,z — dy|z) 2 0
or, equivalently,

S+ A
z— ——ylz

1
4 < 518~ dllylz]

(2.13)

holds, then we have the inequalities

e[(A+9) (z,y|z
folel =) < & - 221 ;‘?A(S)y' )
o <1 220 i ya),
"2 /Re (A3)
0 < llal=l lvlzl — I(z.v12)
(2.15) 1 |A + 6] — 24/Re (A8) (212
-2 Re (A3) o
2 .
.16 el I < - s 012
and
2
@17) 0= lelelP Iyl - i) < s 1@l

The constants % and }I are best possible.

Proof. The inequality (2.14) follows from (2.6) on choosing F' = {1},
e1=e= m, @ =& = Alylz||, ¢1 = ¢ = 3d|ylz| (y,z are linearly
independent). The inequality (2.15) is equivalent with (2.14). The in-
equality (2.16) follows from (2.1) for F' = {1} and the same choices as

above. Finally, (2.17) is obviously equivalent with (2.16). O
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3. Some Griiss type inequalities

The following result holds.

THEOREM 4. Let {e;};c; be a family of z-orthonormal vectors in X,
F a finite part of I, ¢;;,®;; € K (i € F,j =1,2) and z,y € X. If either

(3.1) Re (Z ; jei — 2,7 — Z ¢i’j6i|2) >0

i€F . 1EF

or, equivalently,

Sy Bt by,

(3.2)
el 2

1
1 5\ >
<3 (Zlfpm - ¢i4] )

ieF

for j = 1,2 hold, then we have the inequality

0< (@ yle) = Y (m,eil2) (ei,yl2)
i€F
1/2
(3.3) <1 Dicr |Bi1 — ¢5i_,ll2 2icr | Bi2 — @2_'2
T 4\ XicrRe (®i16i1) D icr Re (®i20i2)

X(ZI(%@IZ)F) (Zl(y,eilz)l2> :

icF icF
The constant % is best possible.

Proof. If we use Schwarz’s inequality in 2-inner product space
(X, ('9 l))a one has

(iIJ - Z (I, €i|2) €,y — Z (ya ei|z) ei“z)

2

(3.4) i€F . i€F .
< a:—Z(m,eﬂz) eilz y—Z(y,eilz) eilz
icF ieF

and, since a simple calculation shows that

(a-Y @ el eny=Y wel) ailz) = (@ vl2) =3 (@ eil2) (e3,912)

i€eF el el
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and

2
v Y (z el elz| =lal2l? - ) |(zeil)]
€F iEF
for any z,y € X, by (3.4) and by the reverse of Bessel’s inequality in
Corollary 1, we have

2
(yl2) = Y (@, €il2) (ei,y]2)
ieF
< (IICI?l»ZII2 > I(r,etlZ)|2) (IIyIzII2 -3 I(y,eiIZ)I2)
icF icF
(3.5) 1 ZF| 3,1 — (,b, 1|2
< 2K |(z, e:]2)?
4 igf«“Re i10i,1) 16217
Z;J‘I’i,z pial?
X = Zl yae’l,z
z%«"Re( 1.2¢z2 ieF

Taking the square root in (3.5), we deduce (3.3).
The fact that % is the best possible constant follows by Corollary 1
and we omit the details. O

The following corollary for real 2-inner product spaces holds.

COROLLARY 3. Let {ei}ie ; be a family of z-orthonormal vectors in
X, F a finite part of I, M; j,m;; >0 (i € F,j =1,2) and 2,y € X such
that Y ,cp M; jm; 5 >0 (j = 1,2) and

(3.6) (Z M;je; —z,x — Z mi’jei|z> >0

ieF ieF
Then we have the inequality

2
0< |(z,yl2) = Y (z,eil2) (v, €il2)
ieF
(3.7) o1 Tier (Mig —min)* S (Mip — mia)”
~ 16 >ier Miami Y i p Miami

1
x> @ eil2)l* Y | el2)

iEF i€F
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The constant 1—16 is best possible.

In the case where the family {e;},.; reduces to a single vector, we
may deduce from Theorem 4 the following particular case:

COROLLARY 4. Let e € X, ||e|| = 1,¢;,®; € K with Re (®;¢;) >
0 (j=1,2) and z,y € X such that either

3.8 Re(®je — z,z — pjelz) > 0
j ]
or, equivalently,
¢+ @5 1
(39) Jo- 2220 < 510,05
holds, then

0 < |(z,yl2) — (x,el2) (e, y]2)]
|®1— 1]  [D2 — o

1
4\ /Re (8191) /Re (2:262)

The constant % is best possible.

(3.10)

IA

|(z, el2) (e, yl2)| -

REMARK 3. If X isreal, e € X, |le|z|| = 1 and a,b, A, B € R are such
that A>a>0,B>b>0and

(3.11) “x— at Al < -;—(A—a), ”y— b+ Bl < %(B—b),
then

|(z, yl2) — (z, el2) (e,y]2)]
(3.12) (A=) (B-b)

1
< - z,e|z) (e,y|2)]|.
<1 B0 o) e
The constant % is best possible.

If (z,¢e|z), (y,e|z) # O, then the following equivalent form of (3.12)

also holds

(wyl) |1 (A-a)(B-b)
(3.13) Grel) 6o N1 Vabar

4. Some companion inequalities

The following companion of the Grﬁss inequality also holds.
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THEOREM 5. Let {et}ze ; be a family of z-orthonormal vectors in X,
F a finite part of I, ¢;,®; € K (i €F), z,y € X and X € (0,1) such
that either

Re (Z@"ei —Qz+ (1 -Ny, x2+1-Ay- Zq&ieilz)
(4.1) ieF ieF
>0

or, equivalently,

(4.2) )\x+(1-)\)y—2@i—;¢ﬁ~eilz

ieF

1 3
<3 (Z |®: — ¢z‘|2>

ieF

holds. Then we have the inequality

Re [@c, ulo) = 3 (@ eile) (e, ylz)]

) g |@; — il
1 1 ; —
< = i€k : Az + (1= Ny, el2)*.
6 (1 - )‘) ZiGF Re 1¢1 ,&ZF

The constant 75 is the best possible constant in (4.3) in the sense that
it cannot be replaced by a smaller constant.

Proof. Using the known inequality
1
Re(z,ulv) < i 2z + ulv||?,

we may state, for any a,b € X and X € (0,1), that

(4.4) Re (a,bl2) < Zi_(11~—A) IAa+ (1= A) b2

Since

(@,y12) =Y (@, eil2) (e, yl) = (2= 2 (mrel2) eny— Y @reil) eile)
i€F ieF eF

for any z,y € X, by (4.4), we get

Re {@c, uln) - Y (@el2) (ei,mz)]

ieF

Re {(w — Z (z,e)2) e,y — Z (y, e;2) ei|z):|

ieF ieF

(4.5)

I
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1A (m - Z (z,e2) ez-)

ieF

- <y— S (w,eil2) ) 2

ieF

1
<
SDa-n

2

2
_ 1

T A=) o+ (1=Ny = Qe+ 1= Nyel)el

ieF

. _

= ——|IA 1- — Az + (11— .
B [P+ ANl = Sl + 1= N n ) ]

If we apply the reverse of Bessel’s inequality from Corollary 1 for Az +

(1 - \) y, we may state that

Az + (1= Nyl2l® = D10+ (1= N y,elz)
1EF

1EzeFl¢’ ¢il* Oz + (1 el 212
= s €42 .

< ey 5 Nyseile)

Now, by making use of (4.5) and (4.6), we deduce (4.3).

The fact that 1 is the best possible constant in (4.3) follows by the
fact that, if in (4. 1) we choose £ = y, then it becomes (i) of Theorem 3,
implying for A = 1 the inequality (2.10), for which we have shown that
7 is the best constant. O

(4.6)

REMARK 4. If, in Theorem 5, we choose A = %, then we get

Re |(z,yl2) — D (2, ¢il) (e, yIZ)]
(47) icF ]
1T ier|®i— 0P > (£52e)
- 4Ez€FRe( z¢1) 2
provided

Re (Z@iei— x;—y,m—;—y 4Z¢iei|z> >0

i€F ieF
or, equivalently,

(4.8)

. eilz

T+y ®; + ¢;
2 Z 2

1 2 :
§§<Z|@i—¢il> :
i€l

i€F
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5. Applications for determinantal integral inequalities

Let (Q,X, 1) be a measure space consisting of a set (1, & a o-algebra
of subsets of Q and p a countably additive and positive measure on X
with values in R U {co}.

Denote by L2 (2) the Hilbert space of all real—valued functions f
defined on 2 that are 2-p-integrable on €, i.e., [ p(s)|f(s )2 dp(s) < oo,
where p : Q — [0,00) is a measurable functlon on Q

We can introduce the following 2-inner product on L2 (Q) by formula

(5.1) (f,glh), // t>!£<§> h(ig’ i(s)

where

fgl(t)‘ du(s)du(t),

f(s) f (t)‘
h(s) h(t)

denotes the determinant of the matrix

i )

which generates the 2-norm on Lf, (Q) expressed by

2
(5:2) Ikl = (% /| / p(s>p(t>\;}3 Ao

A simple calculation with integrals reveals that

Jopfadu  [opfhdu

Jopghdp o ph*du

1/2
du(S)du(t)> :

(5.3) (f.glh), =

and

Jopf2du  fopfhdul'?

Jopfhdu  [q ph®dp
where, for simplicity, instead of [, p(s)f(s)g(s)du(s), we have written

farfadp.
We recall that the pair of functions (g,p) € L2 (€) x L2 (Q) is called
synchronous if .

(5.4) LRl =

(gz)—a@)(p(x)—p(y) >0

for a.e. z,y € Q.
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We note that, if Q@ = [a, b], then a sufficient condition for synchronic-
ity is that the functions are both monotonic increasing or decreasing.
This condition is not necessary.

Now, suppose that h € L2(f) is such that h(z) # 0 for u — a.e.
z € Q. Then, by the definition of 2-inner product (f, g|h),, we have

(ralm, = 5 [ [ ponemsnc

f) 1O (8) _ oY,
x (h<s> h(t)) <h<s) h(t)) du(s)adp)

(5.5)

and thus a sufficient condition for the inequality

(5.6) (f,glh), 20

to hold, that is, the functions (f/h,g/h) are synchronous. It is obvious
that this condition is not necessary.

Using the representations (5.3), (5.4) and the inequalities for 2-inner
products and 2-norms established in the previous sections, we have some
interesting determinantal integral inequalities.

PROPOSITION 1. Let h € L/Z, (©2) be such that h(z) # 0 for p — a.e.
z € Q and (f;);c; a family of functions in L,Z, (Q?) with the property that

Japfifidy  [q pfihdu
=6,

Japfikdp [ ph?du

for any i,j € I, where §; ; is the Kronecker delta.

If we assume that there exists the real numbers M;, m; (i € F') with
Y icr Mim; > 0, where F is a given finite part of I, such that the

functions
i ff  fi
D M- -5 > mi n

ieF el

are synchronous on €2, then we have the inequalities

Jopf2du [opfhdu| |3 (Mitm)®  |foofifdu [, pfihdul

< lier
Jonfhdp  foph2du| 4 ZZFM””’ ieF | Jopfhdu [ phPdp
€
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and

JopfPdu o pfhdp Japfitdn [y pfibdul*
0< -

| fopfhdu [y phdp| ieF | [y pfhdp [y phPdu
2
1 Sier (Mi —mi)” Japfifdu [ pfihdy

— 4 ZieF Mim; ieF fQ pfhdu fﬂ pthu
The constant % is best possible in both inequalities.

The proof follows by Theorem 3 and Corollary 1 applied for the 2-
inner product (-,-|-), and we omit the details.

Similar determinantal integral inequalities may be stated if one uses
the other results for 2-inner products obtained above, but we do not
present them here.
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