• 제목/요약/키워드: k-$\mu\varepsilon$ Model

검색결과 24건 처리시간 0.033초

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF

Confidence Intervals in Three-Factor-Nested Variance Component Model

  • Kang, Kwan-Joong
    • Journal of the Korean Statistical Society
    • /
    • 제22권1호
    • /
    • pp.39-54
    • /
    • 1993
  • In the three-factor nested variance component model with equal numbers in the cells given by $y_{ijkm} = \mu + A_i + B_{ij} + C_{ijk} + \varepsilon_{ijkm}$, the exact confidence intervals of the variance component of $\sigma^2_A, \sigma^2_B, \sigma^2_C, \sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_{\varepsilon}, \sigma^2_B/\sigma^2_{\varepsilon}, \sigma^2_C/\sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_C, \sigma^2_B/\sigma^2_C$ and $\sigma^2_A/\sigma^2_B$ are not found out yet. In this paper approximate lower and upper confidence intervals are presented.

  • PDF

RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석 (RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors)

  • 박태선
    • 한국추진공학회지
    • /
    • 제16권1호
    • /
    • pp.55-63
    • /
    • 2012
  • 동축제트분사기에 대한 난류유동의 특징이 비선형 $k-{\varepsilon}-f_{\mu}$ 모형[1]과 큰에디모사법에 의해서 조사되었다. 비연소조건에서 밀도가 다른 유체가 혼합될 때 레이놀즈수가 일정한 조건에서 리세스와 운동량비가 변화되었다. 비선형 $k-{\varepsilon}-f_{\mu}$ 모형은 리세스와 운동량비의 다양한 조건에서 의미있는 상관관계를 제안하였다. LES결과는 리세스에 의해서 난류유동 구조의 변화를 잘 묘사해 주었다. 리세스가 있는 경우 난류운동에너지의 발달은 리세스가 없는 경우보다 빠르게 나타났다. 또한, 혼합특성은 전단변형률의 변화가 지배적이었지만 국부적인 혼합은 리세스에 의해서 변화되었다.

저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발 (Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

파형벽면이 있는 채널 내의 난류유동에 대한 수치해석 (Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel)

  • 박태선;성형진
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.655-667
    • /
    • 2003
  • Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.

원형블록이 있는 벽면충돌제트 열전달 해석 (Prediction of Jet Impingement Heat Transfer on a Cylindrical Pedestal)

  • 박태선;성형진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.141-149
    • /
    • 2002
  • A numerical simulation is performed for the cooling heat transfer of a heated cylindrical pedestal by an axisymmetric jet impingement. Based on the k- $\varepsilon$- f$\sub$${\mu}$/ model of Park et at., the linear and nonlinear stress-strain relations are extended. The Reynolds number based on the jet diameter(D) is fixed at Re$\sub$D/ = 23000. The local heat transfer coefficients are compared with available experimental data. The predictions by k- $\varepsilon$-f$\sub$${\mu}$/ model are in good agreement with the experiments, whereas the standard 7- f model does not properly resolve the flow structures.

양이온교환 고성능액체크로마토그래피에서 라이소자임의 모멘트 분석 (Moment Analysis (MA) of Lysozyme in Cation Exchange High Performance Liquid Chromatography (HPLC))

  • 고관영;김인호
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.487-493
    • /
    • 2016
  • 양이온교환 고성능액체크로마토그래피에서 라이소자임을 분석하고, 실험결과인 크로마토그램을 통해 모멘트 분석을 수행하였다. 용리 인산완충용액은 1.0, 0.75, 0.5 M의 소금을 포함하였다. 실험변수는 유량, 용리 완충용액중 소금 농도, 시료의 농도로 하였다. General rate (GR) model을 도입하여 1차와 2차 모멘트를 해석하였다. 1차 모멘트 해석에서 평형상수 K를 구할 수 있으며, 이는 $L/u_0$ vs. $({\mu}_1-t_0)/(1-{\varepsilon}_e)(1-{\varepsilon}_i)$]를 도식화했을 때의 기울기이다. 2차 모멘트 해석에서 입자내 확산계수는 이론단수 실험자료에서 계산하였다. 모멘트 분석결과를 통해 여러 물질전달 현상이 이론단 상당높이(HETP)에 주는 영향을 알아보기 위해 van Deemter plot을 작성하고, 총괄 이론단 상당높이($H_{total}$)에 기여하는 $H_{ax}$, $H_f$, 그리고 $H_d$를 조사하였다. 그 중 입자내 확산계수를 나타내는 $H_d$가 가장 지배적이었고, 외부 물질전달 계수를 나타내는 $H_f$의 영향이 가장 미미했다.

국소교란에 의한 난류박리 재부착 유동의 수치해석 (Numerical Simulation of Turbulent Separated and Reattaching Flows by Local Forcing)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.467-476
    • /
    • 2000
  • An unsteady numerical simulation was performed for locally-forced separated and reattaching flow over a backward-facing step. The local forcing was given to the separated and reattaching flow by means of a sinusoidally oscillating jet from a separation line. A version of the $k-{\varepsilon}-f_{\mu}$ model was employed, in which the near-wall behavior without reference to distance and the nonequilibrium effect in the recirculation region were incorporated. The Reynolds number based on the step height (H) was fixed at $Re_H=33000$, and the forcing frequency was varied in the range $0{\leq}St_H{\leq}2$. The predicted results were compared and validated with the experimental data of Chun and Sung. It was shown that the unsteady locally-forced separated and reattaching flows are predicted reasonably well with the $k-{\varepsilon}-f_{\mu}$ model. To characterize the large-scale vortex evolution due to the local forcing, numerical flow visualizations were carried out.

Simple Monodimensional Model for Linear Growth Rate of Photosynthetic Microorganisms in Flat-Plate Photobioreactors

  • Kim, Nag-Jong;Suh, In-Soo;Hur, Byung-Ki;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.962-971
    • /
    • 2002
  • The current study proposes a simple monodimensional model to estimate the linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors (FPPBRs) during batch cultivation. As a model microorganism, Chlorella kessleri was cultivated photoautotrophically in FPPBRs using light-emitting diodes (LEDs) as the light sources to provide unidirectional irradiation in the photobioreactors. Various conditions were simulated by adjusting both the intensity of the light and the height of the culture. The validity of the proposed model was examined by comparing the linear growth rates measured with the predicted ones obtained from the proposed model. Accordingly, the value of $\frac{K\cdot\mu m}{\alpha\cdot L}log(I_0\cdot{I_s}^{\varepsilon 1)\cdot {I_c}^{-\varepsilon})$ was proposed as an approximate index for strategies to obtain the maximal lightn yield under light-limiting conditions for high-density algal cultures and as a control parameter to improve the photosynthetic productivity and efficiency.

난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발 (A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.