• Title/Summary/Keyword: journal profiling analysis

Search Result 650, Processing Time 0.047 seconds

A Case of Citrin Deficiency Presenting with Recurrent Hypoglycemia: Diagnosed by Targeted Exome Sequencing (반복적인 저혈당으로 엑솜 시퀀싱을 통해 31개월에 진단된 Citrin 결핍증 1례)

  • Kim, Chiwoo;Hwang, Jeongyun;Yang, Aram;Kim, Jinsup;Lee, Taeheon;Jang, Ja-Hyun;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Citrin deficiency is an autosomal recessive disorder caused by mutations in the SLC25A13 gene on chromosome 7q21.3, and a type of urea cycle disorder that causes hyperammonemia. Although neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, a type of citrin deficiency, have been described well in many articles for several decades, failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD), the other type of citrin deficiency, has been only identified recently. There was previously no case report about FTTDCD in Korea. Patients with FTTDCD could present with loss of appetite, fatigue, failure to thrive, hypoglycemia, hypercitrullinemia, dyslipidemia, and an increased lactate/pyruvate ratio. Routine evaluation may not reveal the cause of hypoglycemia caused by citrin deficiency. We recently had a case that presented with recurrent hypoglycemia in a 30-month-old boy. Chemistry profiling, urine organic acid analysis, plasma acylcarnitine analysis, and hormone studies indicated values within the normal range or non-specific findings. Mutation analysis to identify the cause of hypoglycemia identified the subject as a compound heterozygote carrying each of the c.852_855del ($p.Met285Profs^*2$), and c.1177+1G>A mutant alleles. We report here on this unusual case of citrin deficiency presenting with FTTDCD for the first time in Korea.

  • PDF

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

The Effect of female Hormone on Knee Joint Laxity (여성 호르몬이 무릎의 느슨함(laxity)에 미치는 영향)

  • Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • The purpose of this study was to determine whether hormone levels change knee laxity in healthy females. Twenty three healthy females were recruited for the study. Serum estradiol and progesterone levels were recorded three times during the subjects' menstrual cycles. The first measurements were taken between day 3 and 7 of the follicular phase and the second data collection coincided with ovulation, 24 to 48 hours after the estrogen surge detected by an ovulation predictor kits. Based on a 28 day cycle, the third data collection occurred approximately 7 days later during the luteal phase. Knee joint laxity was recorded at the same intervals with a KT 2000 arthometer. Hormone levels and phases were compared to passive knee joint laxity with multiple regression analysis. Estradiol and progesterone levels differed significantly across the three tests. Knee joint laxity increased during ovulation. Based on a multiple regression analysis, estradiol and progesterone levels predicts 77.9% to 80.9% of the laxity at 20lb and 30lb loads. An antagonistic relationship between estradiol and progesterone was found when testing for knee laxity. Serum hormone levels have moderate power in predicting knee joint laxity. Individual hormonal profiling in female athletes would allow researchers to access the structural properties of the ACL, such as the laxity which may provide beneficial information to understand female ACL injury mechanism in sports activity.

Relationship Between Annealing Temperature and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates (p-Si 기판에 성장한 BaTiO3 박막의 어닐링온도와 구조적 특성과의 관계)

  • Min, Ki-Deuk;Kim, Dong-Jin;Lee, Jong-Won;Park, In-Yong;Kim, Kyu-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.222-227
    • /
    • 2008
  • In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of a post-annealing process on the structural characteristics of the $BaTiO_3$ thin films were investigated. For the crystallization of the grown thin films, post-annealing was carried out in air at an annealing temperature that varied from $500-1000^{\circ}C$. XRD results showed that the highest crystal quality was obtained from the samples annealed at $600-700^{\circ}C$. From the SEM analysis, no crystal grains were observed after annealing at temperatures ranging from 500 to $600^{\circ}C$; and 80 nm grains were obtained at $700^{\circ}C$. The surface roughness of the $BaTiO_3$ thin films from AFM measurements and the crystal quality from Raman analysis also showed that the optimum annealing temperature was $700^{\circ}C$. XPS results demonstrated that the binding energy of each element of the thin-film-type $BaTiO_3$ in this study shifted with the annealing temperature. Additionally, a Ti-rich phenomenon was observed for samples annealed at $1000^{\circ}C$. Depth-profiling analysis through a GDS (glow discharge spectrometer) showed that a stoichiometric composition could be obtained when the annealing temperature was in the range of 500 to $700^{\circ}C$. All of the results obtained in this study clearly demonstrate that an annealing temperature of $700^{\circ}C$ results in optimal structural properties of $BaTiO_3$ thin films in terms of their crystal quality, surface roughness, and composition.

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods (한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.16-28
    • /
    • 2023
  • Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.

Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor

  • Park, Jisoo;Lee, Hyunji;Tran, Quangdon;Mun, Kisun;Kim, Dohoon;Hong, Youngeun;Kwon, So Hee;Brazil, Derek;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a susceptibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus erythematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue specimens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients. Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic target for, gliomas and other cancers.

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4

  • Yang, Miao;Liu, Ran;Li, Xiajun;Liao, Juan;Pu, Yuepu;Pan, Enchun;Yin, Lihong;Wang, Yi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.873-880
    • /
    • 2014
  • In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.

The Studies of Conductive and Non-Conductive Multi-Layer Depth Analysis by Radio Frequency Gas-Jet Boosted Glow Discharge Atomic Emission Spectrometry (Radio frequency gas-jet boosted 글로우 방전 원자 방출 분광법을 이용한 전도성 및 비 전도성의 다층 두께 분석에 관한 연구)

  • Cho, Won Bo;Lee, Seong Hun;Jeong, Jong Pil;Choi, Woo Chang;Borden, Stuart;Kim, Kyu Whan;Kim, Kyung Mi;Kim, Hyo Jin;Jeong, Seong Uk;Lee, Jung Ju
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.236-242
    • /
    • 2002
  • A method was investigated to determine the thickness of coating on steel sheet using rf glow discharge atomic emission spectrometer. The RF gas-jet boosted glow discharge has such salient feature as good pleasure stability and high sputtering efficiency that it was possible to determine the thickness of silicon resin film on zinc electroplated steel. The erosion speed variation is dependent on discharge power, gas flow rate and discharge pressure. therefore determine discharge condition to measure the thickness of coating on steels. The fundamental studies have been carried out to investigate an optimum condition for in-depth analysis and composition of zinc coating on steel. In this study, the calibration curve for thickness determination of silicon resin film was found to be linear in the range of $1000{\sim}3500mg/m^2$ film thickness. The developed rf gas-jet boosted glow discharge was applied to the analysis of zinc coating and silicon resin film on steel made by RIST.

Method Development for the Profiling Analysis of Endogenous Metabolites by Accurate-Mass Quadrupole Time-of-Flight(Q-TOF) LC/MS (LC/TOFMS를 이용한 생체시료의 내인성 대사체 분석법 개발)

  • Lee, In-Sun;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Park, Hye-Jin;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Lee, Jung-Hee;Cho, Su-Yeon;Choi, Don-Woong;Cho, Yang-Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • Metabolomics aims at the comprehensive, qualitative and quantitative analysis of wide arrays of endogenous metabolites in biological samples. It has shown particular promise in the area of toxicology and drug development, functional genomics, system biology and clinical diagnosis. In this study, analytical technique of MS instrument with high resolution mass measurement, such as time-of-flight (TOF) was validated for the purpose of investigation of amino acids, sugars and fatty acids. Rat urine and serum samples were extracted by selected each solvent (50% acetonitrile, 100% acetonitrile, acetone, methanol, water, ether) extraction method. We determined the optimized liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) system and selected appropriated columns, mobile phases, fragment energy and collision energy, which could search 17 metabolites. The spectral data collected from LC/TOFMS were tested by ANOVA. Obtained with the use of LC/TOFMS technique, our results indicated that (1) MS and MS/MS parameters were optimized and most abundant product ion of each metabolite were selected to be monitorized; (2) with design of experiment analysis, methanol yielded the optimal extraction efficiency. Therefore, the results of this study are expected to be useful in the endogenous metabolite fields according to validated SOP for endogenous amino acids, sugars and fatty acids.