Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0147

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4  

Yang, Miao (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Liu, Ran (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Li, Xiajun (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Liao, Juan (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Pu, Yuepu (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Pan, Enchun (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Yin, Lihong (Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University)
Wang, Yi (Huaian Center for Disease Control and Prevention)
Abstract
In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.
Keywords
apoptosis; esophageal cancer; miR-183; PDCD4; proliferation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, S.H., Li, J.F., Jiang, Y., Xu, Y.J., and Qin, C.Y. (2009). Programmed cell death 4 (PDCD4) suppresses metastastic potential of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 28, 71.   DOI   ScienceOn
2 Zhang, X., Wang, X.Y., Song, X.G., Liu, C.M., Shi, Y.Y., Wang, Y.K., Afonja, O., Ma, C.H., Chen, Y.H.H., and Zhang, L.N. (2010). Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101, 2163-2170.   DOI   ScienceOn
3 Zhao, H.E., Guo, M.J., Zhao, G.Y., Ma, Q., Ma, B.A., Qiu, X.C., and Fan, Q.Y. (2012). miR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells. Int. J. Mol. Med. 30, 1013-1020.   DOI
4 Zhu, J.F., Feng, Y.P., Ke, Z.F., Yang, Z., Zhou, J.Y., Huang, X.R., and Wang, L.T. (2012). Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am. J. Pathol. 180, 2440-2451.   DOI   ScienceOn
5 Shibahara, K., Asano, M., Ishida, Y., Aoki, T., Koike, T., and Honjo, T. (1995). Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 166, 297-301.   DOI   ScienceOn
6 Tanaka, H., Sasayama, T., Tanaka, K., Nakamizo, S., Nishihara, M., Mizukawa, K., Kohta, M., Koyama, J., Miyake, S., Taniguchi, M., et al. (2013). MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J. Neuro-Oncol. 111, 273-283.   DOI   ScienceOn
7 Wei, N., Liu, S.S., Chan, K.K.L., and Ngan, H.Y.S. (2012). Tumour suppressive function and modulation of programmed Cell Death 4 (PDCD4) in ovarian cancer. PLoS One 7, e30311 .   DOI
8 Thomson, D.W., Bracken, C.P., and Goodall, G.J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845-6853.   DOI   ScienceOn
9 Ueno, K., Hirata, H., Shahryari, V., Deng, G., Tanaka, Y., Tabatabai, Z.L., Hinoda, Y., and Dahiya, R. (2013). microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br. J. Cancer 108, 1659-1667.   DOI   ScienceOn
10 Wang, W., Zhao, J., Wang, H., Sun, Y., Peng, Z., Zhou, G., Fan, L., Wang, X., Yang, S., Wang, R., et al. (2010). Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression. Exp. Cell Res. 316, 2456-2464.   DOI   ScienceOn
11 Yang, M., Liu, R., Sheng, J.Y., Liao, J., Wang, Y., Pan, E.C., Guo, W., Pu, Y.P., and Yin, L.H. (2013). Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma. Oncol. Rep. 29, 169-176.   DOI
12 Zhang, H., OzakiZ, I., Mizuta, T., Hamajima, H., Yasutake, T., Eguchi, Y., Ideguchi, H., Yamamoto, K., and Matsuhashi, S. (2006). Involvement of programmed cell death 4 in transforming growth factor-beta 1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25, 6101-6112.   DOI   ScienceOn
13 Lin, Y., Totsuka, Y., He, Y., Kikuchi, S., Qiao, Y., Ueda, J., Wei, W., Inoue, M., and Tanaka, H. (2013). Epidemiology of esophageal cancer in Japan and China. J. Epidemiol. 23, 233-242.   DOI
14 Patil, V.S., Zhou, R., and Rana, T.M. (2014). Gene regulation by non-coding RNAs. Crit. Rev. Biochem. Mol. Biol. 49, 16-32.   DOI   ScienceOn
15 Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-$^{-{\Delta}{\Delta}Ct}$ method. Methods 25, 402-408.   DOI   ScienceOn
16 Ma, G., Zhang, H., Dong, M., Zheng, X.Y., Ozaki, I., Matsuhashi, S., and Guo, K.J. (2013). Downregulation of programmed cell death 4 (PDCD4) in tumorigenesis and progression of human digestive tract cancers. Tumor Biol. 34, 3879-3885.   DOI   ScienceOn
17 Matsuhashi, S., Hamajima, H., Xia, J.H., Zhang, H., Mizuta, T., Anzai, K., and Ozaki, I. (2014). Control of a tumor suppressor PDCD4: Degradation mechanisms of the protein in hepatocellular carcinoma cells. Cell. Signal. 26, 603-610.   DOI   ScienceOn
18 Sarver, A.L., Li, L.H., and Subramanian, S. (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 70, 9570-9580.   DOI
19 Reis, P.P., Tomenson, M., Cervigne, N.K., Machado, J., Jurisica, I., Pintilie, M., Sukhai, M.A., Perez-Ordonez, B., Grenman, R., Gilbert, R.W., et al. (2010). Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol. Cancer 9, 238.   DOI   ScienceOn
20 Salic, A., and Mitchison, T.J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415-2420.   DOI   ScienceOn
21 Santhanam, A.N., Baker, A.R., Hegamyer, G., Kirschmann, D.A., and Colburn, N.H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene 29, 3921-3932.   DOI   ScienceOn
22 Hvid-Jensen, F., Pedersen, L., Drewes, A.M., Sorensen, H.T., and Funch-Jensen, P. (2011). Incidence of adenocarcinoma among patients with Barrett's esophagus. N. Engl. J. Med. 365, 1375-1383.   DOI   ScienceOn
23 Guo, P., Huang, Z.L., Yu, P., and Li, K. (2012). Trends in cancer mortality in China: an update. Ann. Oncol. 23, 2755-2762.   DOI   ScienceOn
24 He, J., and Chen, W. (2012). Chinese Cancer Registry Annual Report (Beijing, China: Military Medical Sciences Press).
25 Hu, Y., Correa, A.M., Hoque, A., Guan, B., Ye, F., Huang, J., Swisher, S.G., Wu, T.T., Ajani, J.A., and Xu, X.C. (2011). Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int. J. Cancer 128, 132-143.   DOI   ScienceOn
26 Jiang, Y., Zhang, S.H., Han, G.Q., and Qin, C.Y. (2010). Interaction of Pdcd4 with eIF4E inhibits the metastatic potential of hepatocellular carcinoma. Biomed. Pharmacother. 64, 424-429.   DOI   ScienceOn
27 Koo, S.H., Ihm, C.H., Kwon, K.C., Park, J.W., Kim, J.M., and Kong, G. (2001). Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet. Cytogenet. 130, 22-28.   DOI   ScienceOn
28 Kwong, D., Lam, A., Guan, X., Law, S., Tai, A., Wong, J., and Sham, J. (2004). Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: Gain of 12p predicts poor prognosis after surgery. Hum. Pathol. 35, 309-316.   DOI   ScienceOn
29 Lankat-Buttgereit, B., and Goke, R. (2009). The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol. Cell 101, 309-317.   DOI   ScienceOn
30 Li, G.R., Luna, C., Qiu, J.M., Epstein, D.L., and Gonzalez, P. (2010a). Targeting of integrin ${\beta}1$ and kinesin $2{\alpha}$ by microRNA 183. J. Biol. Chem. 285, 5461-5471.   DOI   ScienceOn
31 Fassan, M., Cagol, M., Pennelli, G., Rizzetto, C., Giacomelli, L., Battaglia, G., Zaninotto, G., Ancona, E., Ruol, A., and Rugge, M. (2010). Programmed cell death 4 protein in esophageal cancer. Oncol. Rep. 24, 135-139.
32 Corcoran, M.M., Mould, S.J., Orchard, J.A., Ibbotson, R.E., Chapman, R.M., Boright, A.P., Platt, C., Tsui, L.C., Scherer, S.W., and Oscier, D.G. (1999). Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 18, 6271-6277.   DOI   ScienceOn
33 Dubecz, A., Gall, I., Solymosi, N., Schweigert, M., Peters, J.H., Feith, M., and Stein, H.J. (2012). Temporal trends in long-term survival and cure rates in esophageal cancer: a seer database analysis. J. Thorac. Oncol. 7, 443-447.   DOI   ScienceOn
34 Fang, L., Du, W.W., Yang, W.N., Rutnam, Z.J., Peng, C., Li, H.R., O'Malley, Y.Q., Askeland, R.W., Sugg, S., Liu, M.Y., et al. (2012). MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 11, 4352-4365.   DOI   ScienceOn
35 Frankel, L.B., Christoffersen, N.R., Jacobsen, A., Lindow, M., Krogh, A., and Lund, A.H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026-1033.   DOI   ScienceOn
36 Han, Y., Chen, J., Zhao, X., Liang, C., Wang, Y., Sun, L., Jiang, Z., Zhang, Z., Yang, R., Li, Z., et al. (2011). MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6, e18286.   DOI   ScienceOn
37 Gaur, A.B., Holbeck, S.L., Colburn, N.H., and Israel, M.A. (2011). Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 13, 580-590.   DOI
38 Bieche, I., Champeme, M.H., Matifas, F., Hacene, K., Callahan, R., and Lidereau, R. (1992). Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339, 139-143.   DOI   ScienceOn
39 Guo, X., Li, W., Wang, Q., and Yang, H.S. (2011). AKT activation by Pdcd4 knockdown up-regulates cyclin D1 expression and promotes cell proliferation. Genes Cancer 2, 818-828.   DOI   ScienceOn
40 Achille, A., Biasi, M.O., Zamboni, G., Bogina, G., Magalini, A.R., Pederzoli, P., Perucho, M., and Scarpa, A. (1996). Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res. 56, 3808-3813.
41 Borel, C., and Antonarakis, S.E. (2008). Functional genetic variation of human miRNAs and phenotypic consequences. Mamm. Genome 19, 503-509.   DOI
42 Fassan, M., Realdon, S., Pizzi, M., Balistreri, M., Battaglia, G., Zaninotto, G., Ancona, E., and Rugge, M. (2012). Programmed cell death 4 nuclear loss and miR-21 or activated Akt overexpression in esophageal squamous cell carcinogenesis. Dis. Esophagus 25, 263-268.   DOI   ScienceOn
43 Eto, K., Goto, S., Nakashima, W., Ura, Y., and Abe, S.I. (2012). Loss of programmed cell death 4 induces apoptosis by promoting the translation of procaspase-3 mRNA. Cell Death Differ. 19, 573-581.   DOI
44 Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866.   DOI   ScienceOn
45 Li, J., Fu, H., Xu, C., Tie, Y., Xing, R., Zhu, J., Qin, Y., Sun, Z., and Zheng, X. (2010b). miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10, 354.   DOI   ScienceOn