• Title/Summary/Keyword: joint deformation

Search Result 544, Processing Time 0.022 seconds

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

Exaggerating Character Motions Using Quadratic Deformation (이차 변형을 이용한 캐릭터 동작의 과장 기법)

  • Kwon, Ji-Yong;Lee, In-Kwon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.611-615
    • /
    • 2010
  • In this paper, we propose a method that exaggerate a character motion using quadratic deformation. While the previous methods tend to exaggerate a rotational motion of an individual joint angle, our method attempt to model the poses of a whole body at each frame and exaggerate those, so that the whole-pose action of the character can be exaggerated. Our method can be computed in real-time, and prevents a joint motion that rotates unexpected direction.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

The Stress Analysis of the Bellows Joint by the Finite Element Method (유한 요소법을 이용한 Bellows Joint의 응력해석)

  • 이완익;김태완
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.61-68
    • /
    • 1987
  • The Bellows Joint which was used as a absorber or safety equipment to prevent the deformation or fracture of a structure, have been analyzed by the F.E.M using axi-symmetric conical frustum element. Using the F.E.M the general behavior of Bellows Joint corrugation can be investigated easily, and the stability of the analysis be guaranteed. In annular type corrugation, the F.E.M results were agreed with those of other theoretical analyses, but in the U type corrugation, the F.E.M results were more acceptable than those of others.

  • PDF

Efficient Analysis of Piping Systems with Joint Deformation (접합부 변형을 고려한 파이프 설비의 효율적인 해석)

  • 이동근;송윤환;안경철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.50-55
    • /
    • 1989
  • Piping systems are composed of pipes with various thickness, diameter and length. Accurate analysis of a piping system requires a complicated three dimensional finite element model and a computer system with large memory size, while simplified models result in system response prediction with deteriorated accuracy. An efficient analysis model for piping systems is proposed in this study. The proposed model is developed by introducing a joint model which accounts for the behavior of a pipe connection. Pipes are represented by beam elements and the effect of local deformation of pipe connections are replaced by joint element deformations. The proposed model which is as simple and efficient as a beam model can be used to obtain piping system response with accuracy close to that of a finite element model.

  • PDF

EFFECT OF INTERMETALLIC COMPOUND ON MECHANICAL PROPERTIES OF Al-Cu DISSIMILAR BRAZING JOINT

  • Koyama, Ken;Shinozaki, Kenji;Ikeda, Kenji;Kuroki, Hidenori
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.555-560
    • /
    • 2002
  • Brazing of Al to Cu using AI-Si-Mg-Bi brazing alloy has been carried out in the vacuum furnace. In the bonded interlayer, there were two kinds of intermetallic compounds. One of these intermetallic compounds was e phase and the other was b phase. The growth of b phase was controlled by diffusion Al into Cu. Deformation behavior of Al-Cu brazing joint was brittle without deformation of the base metal. Shear strength of the joint was only about 20MPa. The shear specimen broken in the intermetallic compound, which was mainly e phase. Shear strength did not depend on the bonding temperature.

  • PDF

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.