• Title/Summary/Keyword: joint condition

Search Result 1,242, Processing Time 0.029 seconds

Sedimentologic Linkage of depositional environments of Han River and Kyunggi Bay, Korea (한강 유역과 경기만 퇴적환경의 연계성)

  • 오재경;방기영
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • In order to understand the relationship of depositional environment between fluvial and estuarine-embayment in Han River system, including depositional change in main Han River, more than 250 bottom sediment and 70 suspended sediment were analyzed with hydrologic data. Based on the previous data, the study area can be divided into two environment(fluvial and estuarine-embayment) by Singok underwater dam. The gravelly facies occurs in the South and North Han Rivers and sandy and silty facies occupies in the main Han River. Depositional environment of main Han River changed mainly because of limited sediment transport and hydrological condition. In the estuarine-embayment environment, coarse-grained sediments are dominant in tidal channel and of shore whereas fine and poorly sorted sediments are observed in coastal area. During moderate period, relationship between fluvial-estuarine-embayment system is discontinuou s because of flow restriction by artificial construction such as dam and underwater dam, so that each river system characterizes the individual environment. Fluvial and estuarine system is influenced by tide and, thus, transition zone of estuarine- embayment system moves landward. During flooding period, however, each river system is integrated as continuous depositional system by high discharge and, thus, transition zone of fluvial-estuarine-embayment system moves seaward. For further detailed systems about the lower Singok under-water dam, joint research of South-North Korea should be necessary.

The Comprehensive Proportional Hazards Model Incorporating Time-dependent Covariates for Water Pipes (상수관로에 대한 시간종속형 공변수를 포함한 포괄적 비례위험모형)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.445-455
    • /
    • 2009
  • In this paper proportional hazards models for the first through seventh break of 150 mm cast iron pipes in a case study area are established. During the modeling process the assumption of the proportional hazards for covariates on the hazards is examined to include the time-dependent covariate terms in the models. As a result, the pipe material/joint type and the number of customers are modeled as time-dependent for the first failure, and for the second failure only the number of customers is modeled as time-dependent. From the analysis on the baseline hazard functions the failure hazards are found to be generally increasing for the first and second failure, while the hazards of the third break and beyond showed a form of a bath-tub. Furthermore, the changes in the baseline hazard rates according to the time and number of break reflect that the general condition of the pipes is deteriorating. The factors causing pipe break and their effects are analyzed based on the estimated regression coefficients and their hazard ratios, and the constructed models are verified using the deviance residuals of the models.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Detailed Analysis of Vertical Connector in Modular Roadway Slab Under Temperature and Lifting Loading (온도하중과 인양하중에 영향을 받는 모듈러 도로 슬래브 수직연결부의 상세해석)

  • Kim, WooSeok;Nam, Jeonghee;Min, Geunhyeong;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.509-517
    • /
    • 2016
  • In terms of bridge construction, the concrete deck slab is weak members compared to beam members of the bridge supports. Deck slabs must be sound to support and distribute vehicle loads. If slabs are not enough to support the loads, it should be replaced. Bridge deck replacement has been an important industry over the world since the construction is simplified to shorten construction time and to save construction costs. Slab module provides a quickly, easily and reliably construction method in order to avoid high cost and minimum traffic disruption. in addition, slab module shows high reliability since they are factory products. However, slab module should be considered in the performance under various loads. In this study, structural analysis is performed to evaluate the performance of slab module under vehicle loads and temperature loads. Spiral rebar is also utilized around the vertical joints to improve the structural integrity under the lifting loads. In order to confirm the weak area of slab module for the lift condition, numerical analysis has been performed.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

Scientific Conservation Treatment of the Celadon Jar with the Inscription of 'the Fourth Sunhwa Year'(National Treasure No.326) (국보 제326호 청자 '순화4년'명 항아리의 과학적 보존처리)

  • Lee, Sun Myung;Kwon, Oh Young;Park, Jongseo;Han, Woo Rim
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.453-469
    • /
    • 2019
  • The celadon jar with inscription of 'the Fourth Sunhwa Year' is an important chronology that shows the conditions of production of the early celadon due to the inscription on the bottom including its purpose, application, and the producer. This celadon jar has been restored several times in the past. However, concerns over the structural stability, such as the separation and level differences in the joined cracks, have risen because of the aging of the repair materials, which were subjected to various environmental changes over a long time. By examining the conditions of preservation, the major damage was identified as the '入' shaped crack on the front, the 'V' shaped restored part and the crack on its left side, and the 'J' shaped crack on the back side. In the past, the cracks were found to be joined using a refined lacquer containing camphor, drying oil, rosin, etc. mixed with soil powder. The joint line was repainted with the refined lacquer and covered with gold powder. The missing parts were restored with gypsum and colored with acrylic color. After that, the repair materials were aged and emergency treatment was performed at the National Museum of Korea in 1981. At that time, Cemedine C or Cemedine C mixed with microballoons was used for reinforcing the cracks. Conservation treatment focused on removing the past repair materials and reinforcing the physically fragile parts by joining and restoring them based on the examination of the preservation condition. in addition, the area around the restored part was colored for future exhibition.

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

Ultrasonic Bonding of Au Stud Flip Chip Bump on Flexible Printed Circuit Board (연성인쇄회로기판 상에 Au 스터드 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Kim, Yu-Na;Lee, Jong-Bum;Kim, Jong-Woong;Ha, Sang-Su;Won, Sung-Ho;Suh, Su-Jeong;Shin, Mi-Seon;Cheon, Pyoung-Woo;Lee, Jong-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au stud flip chip bumps on the flexible printed circuit board (FPCB) with three different surface finishes: organic solderability preservative (OSP), electroplated Au and electroless Ni/immersion Au (ENIG). The Au stud flip chip bumps were successfully bonded to the bonding pads of the FPCBs, irrespective of surface finish. The bonding time strongly affected the joint integrity. The shear force increased with increasing bonding time, but the 'bridge' problem between bumps occurred at a bonding time over 2 s. The optimum condition was the ultrasonic bonding on the OSP-finished FPCB for 0.5 s.

  • PDF

Effects of Bonding Conditions on Joint Property between FPCB and RPCB using Thermo-Compression Bonding Method (열압착법을 이용한 경.연성 인쇄회로기판 접합부의 접합 강도에 미치는 접합 조건의 영향)

  • Lee, Jong-Gun;Ko, Min-Kwan;Lee, Jong-Bum;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • We investigated effects of bonding conditions on the peel strength of rigid printed circuit board (RPCB)/ flexible printed circuit board (FPCB) joints bonded using a thermo-compression bond method, The electrodes on the FPCB were coated with Sn by a dipping process. We confirmed that the bonding temperature and bonding time strongly affected the bonding configuration and strength of the joints. Also, the peel strength is affected by dipping conditions; the optimum dipping condition was found to be temperature of $270^{\circ}C$ and time of 1s. The bonding strength linearly increased with increasing bonding temperature and time until $280^{\circ}C$ and 10s. The fracture energy calculated from the F-x (Forcedisplacement) curve during a peel test was the highest at bonding temperature of $280^{\circ}C$.