• Title/Summary/Keyword: isotropic design

Search Result 214, Processing Time 0.028 seconds

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

  • Altunsaray, Erkin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.493-508
    • /
    • 2018
  • Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

A NOTE ON NULL DESIGNS OF DUAL POLAR SPACES

  • CHO, SOO-JIN
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • Null designs on the poset of dual polar spaces are considered. A poset of dual polar spaces is the set of isotropic subspaces of a finite vector space equipped with a nondegenerate bilinear form, ordered by inclusion. We show that the minimum number of isotropic subspaces to construct a nonzero null t-design is ${\prod}^{t}_{i=0}(1+q^{i})$ for the types $B_N,\;D_N$, whereas for the case of type $C_N$, more isotropic subspaces are needed.

Development of a five-bar finger with redundant actuation (여유구동을 이용한 5관절 휴먼핑거의 개발)

  • 이재훈;이병주;오상록;김병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1613-1616
    • /
    • 1997
  • In order to develop a human hand mechanism, a 5-bar finger with redundant actuation is designed and implemented. an optimal set of acutator locations and link lengths for the case of one redundant actuator is obtained by employing a composite design index which simulataneously consider several performance indices such as workspace, isotropic index, and force transmission ratio. Each joing is driven by an compact actuator mechanism having ultrasonic motor and a gear set with poeneiometer an controlled by VME Bus-based control system.

  • PDF

Simple Method of Analysis for Preliminary Design of the Composite Laminated Primary Structures for Civil Construction

  • Kim, Duk-Hyun-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.121-126
    • /
    • 1991
  • In his recent book, D.H. Kim proposes to use the quasi-isotropic constants by Tsai for the preliminary design of the composite primary structures for the civil construction. Such structures generally require a large number of laminae layers. Simple equations which can predict "exact" values of the buckling strength, the natural frequency of vibration, and the deflection for the special orthotropic laminates are presented. Many laminates with certain orientations lave decreasing values of B$\_$16/ and B$\_$26/ as the number of plies increases. Such laminates, with D$\_$16/=D$\_$26/\longrightarrow0, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the Isotropic plates can be used. Use of some coefficients can produce "exact" value for laminates with such configuration.

  • PDF

A Study on the Near-Field Stresses and Displacement of a Stationary Interfacial Crack in Two Dissimilar Isotropic Bimaterials (두 상이한 등방성 이종재료 정지계면균열의 선단 응력장과 변위장에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1897-1905
    • /
    • 2004
  • In many part of machines or structures that made of bimaterial bonded with two dissimilar materials, most failures occur at their interface. Therefore, the accurate analysis of fracture characteristics and the evaluation of mechanical strength for interfacial crack are essential when we design those structures. In this research, stress and displacement components in the vicinity of stationary interfacial crack tip in the two dissimilar isotropic bimaterials are established. Hereafter, the stress components established in this research can be applied to the photoelastic hybrid method which can be used to analyze the fracture behavior of the two dissimilar isotropic bimaterials.

Variation of Electric Properties Depending on Isotropic and Anisotropic Texturing of Solar Cell (등방성 에칭과 이방성 에칭이 태양전지 셀의 전기적인 특성에 미치는 효과)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.31-35
    • /
    • 2011
  • For high efficiency of Si-cells, Si wafers were textured by the KOH and NaOH etching solution to decreas the reflectance at surfaces of the cells. The textured surfaces were shown various types such as isotropic and anisotropic depending on the etching solution. The reflectance at sample of an anisotropic form with pyramid type was lower than that of isotropic form. The surface with isotropic form of general tiny circles on the surface increased the efficiency, however, the reflectance of it was increased. The efficiency was increased on surface with low roughness.

An Analysis of Eigenvector Coefficient for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials (유사등방성과 이방성 이종재 V-노치 균열의 고유벡터계수 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.88-94
    • /
    • 2001
  • The V-notched crack problem in dissimilar materials can be formulated as an eigenvalue problem. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of the eigenvector coefficients associated with eigenvalues for V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials. The RWCIM algorithm is programed by the commercial numerical program, MATHEMATICA. The numerical results obtained are shown that the RWCIM is a useful method for determining the eigenvector coefficients of V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials.

  • PDF

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재료 내의 V-노치 균열에 대한 고유치와 고유벡터 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.129-139
    • /
    • 2000
  • The problem of eigenvalue and eigenvector is obtained from a V-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded interface conditions. The complex stress function is assumed as the two-term William's type. The eigenvalue is solved by a commercial numerical program, MATHEMATICA to discuss stress singularities for V-notched cracks in pseudo-isotropic dissimilar materials. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination to eigenvector coefficients associated with eigenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

  • PDF

3-Axial Isotropic Electric-Field Probe Design with Resistor-Loaded Short Dipole (저항 부하된 소형 다이폴을 이용한 3축 등방성 전기장 프로브 설계)

  • Moon, Sung-Won;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.246-249
    • /
    • 2017
  • In this paper, we designed the 3-axis isotropic electric-field measurement probe using resistor-loaded short dipole with lumped chip resistors. The designed probe shows good isotropic characteristics as well as wideband and low sensitivity. The isotropic characteristics of ${\pm}0.39dB$ from 100 kHz to the 3 GHz band were derived and the reception sensitivity was 0.1 V/m. The frequency response is within 3 dB of the whole section, especially ${\pm}1.3dB$ from 150 kHz to 3 GHz, which is superior to the conventional electric field probe with short dipoles.