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ABSTRACT
In his recent book, D.H. Kim proposes to use the quasi-isotropic constants by
Tsai for the preliminary design of the composite primary structures for the
civil construction. Such structures generally require a large number of laminae

layers.

Siaple equations which can predict "exact™ values of the buckling strength,

the natural frequency of vibration,

orthotropic laminates are presented.

have decreasing values of Bis and Bzs as the number of plies increases.
including the

laminates, with Die=D26—0,

and the deflection for the special
Many laminates with certain orientations

Such

laminates with anti-symmetric

configurations can be solved by the same equation for the special orthotropic

laminates.
isotropic plates can be used.

If the quasi-isotropic constants are used,
Use of some coefficients can produce "exact”

the equations for the

value for laminates with such configuration.

1. Introduction

In his recent book, D.H. Kim proposes to
use the quasi-isotropic constants by Tsai for
the preliminary design of the conmposite
primary structures for the civil
construction. Such structures generally
require a large number of laminae layers.
This  concept greatly simplifies the
calculation effort at the early stage of
design because

A. The classical mechanics and elasticity
theories can be used.

B. There is no coupling between the bending
and the =aid-plsne extension reducing the
three simultaneous fourth order partial
differential equations to one fourth order
partial differential equation.

C. At the preliminary design stage;, the
orientations of laminse in a laminate are not
known. This fact discourages the most of the
engineers from the beginning. Use of the
quasi-isotropic constants gives a guide-line
toward a simple and accurate analysis.

Simple equations which can predict “exact”
values of the buckling strength, the natural
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frequency of vibration, and the deflection
for the special orthotropic laminates are
presented. Many laminates with certain
orientations have decreasing values of Bis
and Bzes as the number of plies increases.
Such laminates, with Dye=D26—0, including
the laminates with anti-symmetric
configurations can be solved by the sanme
equation for the special orthotropic
laminates. If the quasi-isotropic constants
are used, the equations for the isotropic
plates can be used. Use of some coefficients
can produce “exact” value for laminates with
such configuration. . The most of the
structures for c¢ivil construction require
many layers of plies even though the ratio of
the thickness to the length is small so that
the effect of transverse shear deformation
can be neglected.

2.Deflection of Laminated Plates

A. Deflection of Rectangular Specially
Orthotropic Laminated Plates.

If all four edges are simply supported, the
expression for the lateral deflection can be
obtained as

- R X nry
wix,y) = ngl ngl Wan sin a sin 3 1)




where

qmn

Wmn = ————— (2)

%4 -DEN4
in which
n 4 m?2 n?2 n 4
DENd= Dy (—) + 2 Ds(—)(—) + D2(—) (3)
a a a b

D3 = D12 + 2D¢s, and

qen= —5—I.Ibq(x,y) slnfzifsln 2—z—y—ydxdy (4
ab ¢ 7 a b
in which q(x,y) 1is the lateral
loading.
B. Rectangular
Larninated Plates.
For Laminates with such orientation,
A16 = A26 = B11 = Bzz = Bss =D16 = D2¢ = 0.
The equation for the lateral deflection given
by Ashton and Whitney (7-36) is

applied

Antisymmetric Angle-Ply

w(x.y)=g: & van sin2EX sinREY (5)
=1 =1 a b
where
R4b4
Wmn= _%fgﬁg;‘[(Ai1m2+A66n2R2)(A66EZ+A22n2R2)
—-(A12+A6s)202n2R2) (6)
where

R = a/b and
Den.= [(A11 m2+ Ass n2R2) (As¢m2+A22n2R2)
- (A12+A66)2m2n2R2] - [Dy1m4+2(Dy2+2D6s)
-m2n R24D22n4R4] + 2m2n2 R2(Ag2+Acs) -
(3B16m2+B26n2R2) (B1sm2+3B26n2R2)~
n2R2(Assm2+A22n2R2) - (3B16m2+B2sn2R2) 2
- 82( A11 w2 + Ass n? R2)
© (B1s m2 + 3B2s n2R2)2 (7

If Bis = B¢ = 0, we have u°= v° = 0, and

Eqn(6) is exactly same as Eqn(2).

C. Some Orientations with Bis = B2s¢ — O.
For Angle~Ply laminates,

(B16,B26) = T (Qi6,Q26)k(hk® - hk-12) and
(mo)_0=—(@6)
(526)_0 = - (Q26)
Therefore, as the number of layers is
increased, Bys — 0 and B2s — O.
Some other laminates with certain

orientations will have similar situation with
— 0. For such cases, the
deflection equation is same as the case of
the special orthotropic laminates.

D. DEN, The Denominator.

Dis = D2s¢

Consider DEN4 in Eqn(3).

4 2 2
DENe = D2 + 2 Da(-Rf (2 v pp(-)

2 4
(%)“[m +2 na(%xo Dz(—:%) 1

= (_§‘>4[Dl+2D3+D2+2D3(r2—1)+Dz<r‘-1)]
= (—g—)4~ DENGN (8)
in which r = 22
nb

and DENGN = DEN4/(m/a)4
When the normalized stiffnesses are used,
DENNM = (12/h3)DENGN

= Dy *+2D3*+D2* + 2D3*(r2-1)+D2*(r4-1)
where D* = 12D/h3
Consider the i~th ply
hi® 12
12 hi3 [Us+Uzcos(29i) +Uscos(46i) ]
Dz2.i* = U1 - Uzcos(20i) + Uscos(46i)
2D3,i* = 2[U1-3U3cos(40:)]

where Uirs are as given by Eqns(5-43) and
(5-44) of Ref(1).

Hence

Di,i*+2D3,i* + D2, i* = 4[Us - Uscos(40i)]

(10)

(11)

Dy,i* =

(12)
(DENNM) 5 =4[Us-Uscos(46i)]
+2[U1-3Uscos(46;) (r2-1)]
+ [Ui-Uzc0s(20i)+Uscos(40i)]1(r+-1)  (13)
If the ply thicknesses and material

properties are equal, we can have
DENGN = (h3/12)- 4[U; - UsCTH4)
+ 2(U3—3UaCTH4) (r2-1)

+ (Uy-U2CTH2 + U3CTH4) (r4-1)1
ho 3
3° &
CTHA = (22)° & cos(40:)[3-(1-D)3)]  (15)

If r=1,

where
CTH2

1 cos(20:i)[i3-(i-1)3)] (14)

DENR1 = 4(Uy; - U3CTH4) (18)
In case of the special orthotropic laminates,
DENHR1 = 4(U;-Us) (17

E. Use of the Quasi-Isotropic Constants.
The quasi-isotropic constants, by Tsai,are

] Uy Us O
[Qlise = [ Us U; O
0 0 Us

When the quasi-isotropic constants are used,
D11 = D2z = Di2 + 2Dss = D3 = (h3/12)Qqqise
19

(18)

and the Eqn(3) reduces to
m 4 m2 n? n ¢
DEN4iso =Dy [(—) + 2 (—) () + (=) ]
a a b

b
which 1is identical to the of(zg%
isotropic plate

Eqn(8) can be written as

case



h
1

z Ui (4 + 2(r2-1) + (r4-1)]

DEN41'°=(—2~)4
(21)

Ifr=1 a

DENdise = (%)" ilz_ (4Uy)
One may obtain the initial deflection for the
preliminary design by the use of Eqns(1),
(2), and(21).

F. Use of Correction Factor to Obtain the
YExact” Solution,

When thick laminates are used for civil
construction, considerable number of
orientations will have rapidly decreasing
quantities of Bi;j as the number of layers
increases for which cases Eqn(2) can be used
with good accuracy. For such cases one may
start use to Eqn(21). Relatively "exact”
value can be obtained from the preliminary
design stage by the use of the formulas
proposed as follows.

With
1 = qan
Wan %€ 7ADEN4iso (22)
we define
Wmn = Wmn“'o/FR,Cz (23)
and MDEN4ise = DEN4ise x (a/m)4
where )
FRC(1)2 = [Dy +2D3+D2+2D3(r2-1) +D2(r4-1)1
(h3/12)U1[4 + 2(r2-1) + (r* -1)]
(24)
DENGN
MDEN4iseo
FRC(2)2= [Dy *+2D3*+D2*+2D3* (r2-1) +D2*(r4-1)1

U1 [4+2(r2-1)+(r4-1)]
(25)

FRC(3)2 = [4(Ug-U3sCTH4) + 2(Uy-3U3CTH4)
“(r2-1)+(Ug~ U2CTH2 + UsCTH4) (r4-1)]
X 1/{Us[4+2(r2-1)+(r4-1)]1}

At the preliminary design stage, (%gé

orientation of each ply is not known. In

such case, one may use the invariants only

FRC(4)2 = ©2n

[4(Us-U3)+2(U1=3U3) (r2-1)+(Us-U2+U3) (r4-1)]
Us[4+2(r2-1)+(r4-1)]

G. Design Steps
Factors.
1) Decide the material properties and obtain
the Ui-s.
2) Obtain wani®*° by Eqn(2) and (21) and wmn
= wanl®*°/FRC(4)2 given by Eqn(27).

Using the Correction

123

3) Proceed to analyse the whole structural

systenm.
4) With the result of 3), design the
orientations.

5) Obtain the exact deflection by

Wmn = W-ni'o/FRC(l)z,

Wmn = Wmni®9/FRC(2)2, or

Wmn = Wani®°/FRC(3)2,
In reality, use of FRC(1), at this stage, may
be simpler.

3. Eigenvalue Problens.

The concept developed in the previous
article can be extended to the eigenvalue
problems of laminated composite primary
structures of civil construction as long as
Dis = D26 = 0, and Bis — 0,B26 — O as the
number of plies increases.

A, Special Orthotropic
Laminates

The natural! frequency of vibration and the
critical buckling strength are given as

Rectangular

4
@nZ = ~—"p~ DEN4 (28)

Nx .= —(wa/m) 2DEN4 (29
B. Rectangular Antisymmetric Angle-Ply

Laminated Plates

Consider Eqn(7-113) and (7-86) of
Ref(1)which can be expressed as
a2 = %—les (30)
Nx = -(a/mm)2T123 (31)
where
Tizs =Tsa+ 2T12T23T13 - T22T132 - T11T232
T11T2z — T122
(32)
in which
T11 = A1y (_%Z)z + Acc(ﬂ%—)z
- By mw
Tiz = (A2 + Ass)( a ¢ b )
2
Ti3 = - [3B1e( !%- ? + B2s ( E%% ) 1 ( E%— )
T2z = Azz(m—;')2 + Aco(!g—)z
- - a2 LU
T2z = - [Biel a } + 3B2s ( B ) I " )
Tas = Dyy ( l: 14 + 2(D12 + 2Dsé)
LR YOR SR LA
( - 12( 5 )2 +D22( a )

= w4(DEN4) (33)

C. Laminats with some orientations may have
Dis =D26 = 0, and Bt¢ — O and B2é — O as
the number of plies are increased, For such



cases, the solutions for the eigenvalue
problems will be similar to the case of the
special orthotropic claminates.

D. The DEN4 terms are same as the case of
deflection.

E. The quasi-isotropic constants given by
Eqn{18) are used. DEN4is° is as given by
Eqn(20), (21), and(22). One may obtain the
initial values by

4
@n2 = —"‘;— DEN4iz=o (34)

Nx = —-(ma/n)2DEN4is0o (35)

Eqn(21) can be used for DEN4iseo,
F. Use of Correction Factor to Obtain the
"exact” Solutions.
With (wnise)
Eqns(34) and (35),
solutions as
(wn)2 = (wni®e)2 . FRC? (36)
NXcr = Nxecri®s® - FRC2 (36)

The FRC’s defined in the previous article
are used for the eigenvalue problems also.

G. Design steps using "exact” values from
the preliminary stage are the same except
that the (wni®<®)2 and Nxcri®© are multiplied
by FRC2, 1In case of deflection, wmni®°, is
devided by FRCZ,

4. Numerical Example
The material properties used are as
follows.

and Nxcri®e defined by
we define the "exact”

E1 = 38.6 GPa
Ez = 8.27 GPa
viz = 0,26
V21 = 0.0557
o =0.00125 »

Giz = 4.14 GPa
The results of calculation are as shown in
Table (1) to (4)
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CONCLUSION
Designing with composite materials is very

much complicated. Not only the anisotropy of
materials but the several kinds of coupling
terms also make the analysis so much messed
up. Even after obtaining the stress and
strain for each ply,the strength theory
involves six equations for each ply. Thus,if
both maximum stress and strain theories are
used,each ply requires 12 equations. These
has to be done for each lamina and a laminate
with N laminae requires 12N equations for
failure conditions. Use of quadratic
equations especially for the strain space can
reduce the number of equations significantly
but use of "exact” theory for the preliminary
design of large scale composite structures is
too difficult if not impossible. D.H.Kin
proposed in his recent book¢!> to use
quasi-isotropic constants for the preliminary
design.

This report proves that his concept is
good for the deflections and eigenvalue
probleas of the special orthotropic and
antisymmetric angle ply laminates for which
closed form solutions are available. This
concept is good for many other laminates with
different orientations especially when the
increase of the number of laminae reduces the
bending-extension coupling terms. The most
of the structures used in civil construction
are large in sizes and such structures
require large number of plies even though the
ratios of the thicknesses to the lengths are
small so that the effects of shear
deforration can be neglected.

It should be borne in mind that the
Yexact” analysis is the "must” at the stage
of final analysis. The maximun strains at
failure of the most of the composites are
nuch smaller than those of petals. In case
of advanced carbon fiber reinforcements,
maximum elongation to failure reported to
date is only 2%.

The use of formulas, proposed by D.H. Kim
, to modify the result by the simple method,
to obtain "exact” solution is proved to be
effective.



Table 1. [+ 8] & = +15° (Antisymmetry Angle-Ply)
r(N) 38 [ 62y | 9(18) | 12(24) | 15(30) | 21(42) 27(54)
wntexact> | 501 430 2632 4055 5668 9392 3694

WnCOFTRY | 507 434 2635 4058 5671 9395 3696

on<Ive) 529 497 2750 4234 5917 9802 4290
Brs*/Dii* _ |0.0316 | 0.0158 | 0.0104 | 0.0079 0.0062] _0.0045 0.0033
B26*/D11* __ |0.0045 | 0.0023 | 0.0015 | 0.0011 0.0009] 0.0006 | _0.00048
FRCZ(1) 0.9149 [ 0.9149 | 0.9149 | 0.9149 0.9149] 0.9149 | 0.9149
FRCZ(2) 0.9582 | 0.9582 | 0.9582 | 0.9582 0.9582] _0.9582 | 0.9582
wi®°-FRC (2)| 506 1434 2635 4057 5669 9392 13692
w§'°;FRC W} 484 1369 2516 3874 5413 8968 13074
O oty | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 [ 0.999 0.999
@n Coxact)

- 0.956 | 0.958 | 0.958 | 0.958 0.958 | 0.958 0.958
Wn
Table 2. [ABBAAB] A=15° B=-15° (Antisymmetry Angle-Ply)
r(N) 3(6) | 6(12) | 9(18) [ 12(24) | 15(30) | 21(42) 2704)
wntoxact> | 506 434 2635 4057 567 9394 3696

WnCorERY [ 507 431 2635 4058 567 9395 3696

wnlisod 529 1497 2750 4234 5917 9802 4290
B1o*/D1.*__ ]0.0316 | 0.0158 | 0.0104 | 0.0079 0.0062] _0.0045 0.0033
B2s*/D; 1 [0.0045 | 0.0023 | 0.0015 | 0.0011 0.0009] _0.0006 | _0.00048
FRCZ(1) 0.9149 | 0.9149 | 0.9149 | 0.9149 0.9149] 0.9149 | 0.9149
FRCZ(2) 0.9582 | 0.9582 | 0.9582 | 0.9582 0.9582] 0.9582 | 0.9582
wk®°-FRC (2)| 506 1434 2635 4057 5669 9393 13693
w§'°éFRC (W] 44 1369 2516 3874 5413 8968 13074

exac
Un  FiRy- | 0.998 | 0,999 | 0.998 | 0.999 0.999 | 0.999 0.999
wn Cexact)
i 0.956 | 0.958 | 0.958 | 0.958 0.958 | 0.958 0.958
n
FRC(1) : By Eqn(26) FRC(2) : By Eqn(24)
Table 3. [+ 8] 68 = +15° (Antisymmetry Angle-Ply)
r(N) 3(6) 6(12) 9(18) 12(24) 5(30) 21(42) 27(54)
Xor (°X85t3 [T35707 |-207848 |-702858 |-1667169 |-3257215-8940249 |[-19003430
Nxor (o ERY | —26072 |-208578 |-703952 |-1668628 |-3259040]-8942803 |-19006710
Nxcr (1500 |—28382 |—227062 |-766335 |-1816493 |—-3547847|-9735293 |-20691040
By 6*/D1.*__|0.0316 | 0.0158 | 0.0104 | 0.0079 0.0062] _0.0045 0.0033
B26*/Dy 1% _ ]0.0045 | 0.0023 | 0.0015 | 0.0011 0.0009] _0.0006 | _0.00048
FRCZ (1) 0.8372 | 0.8372 | 0.8372 | 0.8372 0.8372] _0.8372 | 0.8372
FRCZ(2) 0.9181 | 0.9181 | 0.9181 | 0.9181 0.9181] 0.9181 | 0.9181
N$22 FRC2(2) |-26057 |-208465 |-703572 |-1667726 [-3257278|-8937972 |-18996443
h'é?éFRCZ(g) -23761 |-190096 |-641575 |-1520772 |-2970257|-8150389 |-17322538
t
§§2:<:::§, 0.986 | 0.996 | 0.998 | 0.999 0.999 0.999 | 0.999
(exact)
Ri::(ifo, 0.901 |0.915 0.917 | 0.918 0.918 0.918 | 0.918
Table 4. [ABBAAB] A=15° B=-15° (Antisymmetry Angle-Ply)

r(N) 3(6) | _6(i2) | 9(18) [ 12(24) | 15(30) | 21(42) 27(54)
Nxor(oxact> |-26031 [-208431 |~703831 |-1668466 |-3258837|-8942519 |-19006350
Nxcr Corthy [26072 |-208579 |-703953 |-1668628 |-3259040[-8942803 [~19006710
Nxor <1507 |—28382 |-227062 |-766335 |-1816493 |-3547847|-9735293 |-20691040
Bis*/Dii*__ |0.0104 | 0.005 | 0.0033 | 0.0026 0.0021] _0.0015 0.0011
Bze*/Di1* __|0.0015 | 0.00073] 0.00048] 0.00036 | 0.0003] _0.00021| 0.00016
FRCZ(1) 0.8372 | 0.8372 | 0.8372 | 0.8372 0.8372| 0.8372 |_0.8372
FRCZ(2) 0.9181 | 0.9181 | 0.9181 | 0.9181 0.9181] 0.9181 | 0.9181
NE22-FRC2(2) | -26057 |-208465 |-703572 |-1667726 |-3257278|-8937972 |-18996443
N'S?;FRczsﬁ) -23761 1-190096 |-641575 |-1520772 |-2970257]|-8150389 |-17322538
NxXor oX0°” 10.998 | 0.999 | 0.999 | 0.999 0.999 0.999 | 0.999

Xer h)

Nxcr(exact)

ot ooy |0.917 [0.918 0.918 | 0.919 0.919 0.919 | o0.919
FRC(1) : By Eqn(26)
FRC(2) @ By Eqn(24)
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