Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.
본 연구에서는 슈타이너$.$레무스(Steiner-Lehmus) 정리에 대한 다양한 증명을 찾아 이들 증명에 사용된 수학적 개념, 정리, 방법들을 고찰하며, 몇 가지 증명에 대해서는 기존의 기술 방법을 개선한 좀더 구체적인 형태로 기술하였다. 이를 통해, 이등변삼각형의 흥미로운 성질인 슈타이너$.$레무스 정리에 대한 다양한 증명 방법을 밝히고, 중등학교 수학교육의 질적이고 양적인 확장을 위한 기초 자료를 제공할 것이다.
본 연구는 지상사진기에 의한 구조물(석탑)측정에 관한 것으로서 석탑중 통일신라의 석탑인 감은사지 삼층석탑, 고선사지 삼층석탑, 불국사 삼층석탑(석가탑) 및 불상인 석굴암 본존상, 광주철조여내좌상을 대상으로 조형비를 분석하여, 조형원리에 접근하는데 의의를 갖고 있다. 등고선도와 실측치를 정밀하게 얻을 수 있었으며, 이를 바탕으로 조형비를 분석한 결과, 3재의 석탑과 2개의 불상에서 공통점을 발견할 수 있었다. 우선 석탑의 경우 옥개석폭들은 8 : 7 : 6의 비예관계로 구성되어 있었으며, 상대갑석을 밑변으로 정삼각형과 이등변 삼각형을 긋고, 그 정점사이의 거리를 반경으로 하여 정삼각형의 정점에서 원을 그리면 삼층 옥신 윗면과 일치하였고, 또 기준면으로부터 $70^{\circ}$의 2등변 삼각형을 그러는 경우 상대갑석의 끝점들을 거의 통과하며, 삼층 옥개석의 낙수면과 일치함을 알 수 있었다. 불상의 경우 양 눈사이의 중점을 중심으로 원이 성립되고, 어깨와 명치를 연장하면 무릎에 접함을 알 수 있었다.
In this study, we investigated whether the theorem is established even if we replace a 'square' element in the Euclidean proof of the Pythagorean theorem with different figures. At this time, we used different figures as equilateral, isosceles triangle, (mutant) a right triangle, a rectangle, a parallelogram, and any similar figures. Pythagorean theorem implies a relationship between the three sides of a right triangle. However, the procedure of Euclidean proof is discussed in relation between the areas of the square, which each edge is the length of each side of a right triangle. In this study, according to the attached figures, we found that the Pythagorean theorem appears in the following three cases, that is, the relationship between the sides, the relationship between the areas, and one case that do not appear in the previous two cases directly. In addition, we recognized the efficiency of Euclidean proof attached the square. This proving activity requires a mathematical process, and a generalization of this process is a good material that can experience the diversity and rigor at the same time.
The paper is devoted to the description of family of scalene triangles for which the triangle formed by the intersection points of bisectors with opposite sides is isosceles. We call them Sharygin triangles. It turns out that they are parametrized by an open subset of an elliptic curve. Also we prove that there are infinitely many non-similar integer Sharygin triangles.
This paper treats the conditions for the existence and stability properties of stationary solutions of reaction-diffusion equations of Gierer-Meinhardt type, subject to Neumann boundary data. The domains in which diffusion takes place are of three types: a regular hexagon, a rectangle and an isosceles rectangular triangle. Considering one of the relevant features of the domains as a bifurcation parameter it will be shown that at a certain critical value a diffusion driven instability occurs and Turing bifurcation takes place: a pattern emerges.
본 연구는 평면 도형의 도형 분류하기 과제를 제시할 때 길이와 각의 표기 여부가 도형의 개념 이해에 어떤 영향을 주는지 알아보는데 목적이 있다. 이를 위해, 초등학교 4학년 학생 33명을 대상으로 분류하기 과제 해결 과정을 Eye-tracker를 통해 녹화하고 정답률과 Gaze Duration을 중심으로 분석하였다. 그 결과, 이등변삼각형과 정삼각형의 분류하기에서는 길이를 제시하였을 때 정답률이 증가하고 Gaze Duration은 감소하였다. 예각삼각형과 둔각삼각형 과제에서도 직각을 표기했을 때 정답률이 증가하고 Gaze Duration이 감소하였다. 이러한 결과로 볼 때, 평면도형을 분류하는 과제를 제시할 때는 길이와 각을 표기하여 학생들이 어림하여 도형을 분류하기 보다는 도형의 개념 이해를 바탕으로 분류하는 것을 측정하는 데 초점을 두어야 할 것이다.
본(本) 연구(硏究)에서는 기준점측량(基準點測量)의 기하학적(幾何學的)인 조건(條件)을 최적(最適)으로 하는 각조건(角條件)을 제시함으로써 기준점((基準點)들의 정확도(正確度)를 향상시키는데 목적(目的)이 있다. 이를 위해 임의의 데오돌라이트 관측점(觀測點)에서 관측(觀測)한 기준점좌표(基準點座標)의 정확도(正確度)를 평가할 수 있는 식(式)을 유도하고, 이를 적분(積分)하여 여러 좌표(座標)들의 평균오차(平均誤差)를 구하였으며, 이로부터 최적(最適)의 데오돌라이트 관측점(觀測點)의 위치(位置)를 결정(決定)하였다. 일반적(一般的)으로 정삼각형(正三角形)이 경우(境遇) 기하학적(幾何學的) 조건(條件)인 것으로 알려져 있으나, 각(各) 변(邊)들의 관측(觀測) 정밀도(精密度)가 틀리므로 밑각이 $52.77^{\circ}$인 이등변삼각형이 최적(最適)이었으며, 삼각수준측량(三角水準測量)의 경우 $45^{\circ}$일 때 최적(最適)이었다. 또한 근거리(近距離) 사진측량(寫眞測量)을 위한 기준점측량시(基準點測量時) 최적기선(最適基線)과 대상물(對象物)까지의 거리연계식(距離關係式)은 $D_0=0.357587-0.357587B_0+0.308555B_0{^2}$ 임을 알 수 있었다.
The aim of this study is to consider breast imagery in art as depicted through western painting. Twenty western art paintings were collated. Most of the sample paintings were created from the mid-nineteenth century to the late twentieth century and some are from the Renaissance period. Ten anthropometric items were used to measure 15 distances between two landmarks and 3 angles between three points. The distance from the nipple to the sternal notch and to the midclavicular point was the same and they were 0.46 of the distance from the sternal notch to the umbilicus. The shape of the projection of the breast was almost an isosceles triangle and the altitude of the triangle was at a proportion of 0.45 of the bottom length and 0.16 of the distance from the sternal notch to the umbilicus. The distance between the lateral ends of the breasts was 2.14 times the facial width and the distance between nipples was 1.36 times the facial width. Proportions from works of art are more ideal and attractive than clinically measured proportions. The desirable ratios measured from historical paintings might be useful in planning breast surgeries.
본 논문에서는 조선 시대의 산학서에서 다루어진 삼각형에 대한 내용을 고찰한다. 기하보다 대수에 대한 연구가 주를 이루었던 조선시대 산학 연구의 특성을 고려하면, 삼각형 자체에 대한 기하학적 탐구보다는 삼각형 모양의 밭의 넓이 측정 방법에 대한 설명이 기대된다. 그러나 예외적으로 직각삼각형인 구고에 대해서는 심도 있는 연구가 이루어졌고, 측정이라 하더라도 일반 삼각형에 대해서는 근삿값 수준으로 다루어진 것을 감안하면 삼각형 관련 내용에 대한 분석은 의의 있다고 생각된다. 조선의 산학서 <묵사집산법>, <구일집>, <산학입문>, <주해수용>, <산술관견>에 대한 고찰 결과, 삼각형 관련 내용은 크게 세 가지로 분류할 수 있 다. 측정의 필요가 있던 밭 모양과 관련한 도형의 측도, 측정 대상으로서의 도형으로부터 기하 연구 대상으로서의 도형으로 넘어가는 과도기적 내용, 서양 수학의 영향으로 인한 도형의 정의 및 성질에 대한 탐구와 타당화이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.