• Title/Summary/Keyword: isolation device

Search Result 299, Processing Time 0.038 seconds

Seismic design for application of LNG storage tank isolation system (LNG 저장탱크의 면진시스템 적용을 위한 내진설계)

  • Seo, Ki-Young;Park, Jae-Hyun;Yang, Seong-Yeong;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF

A Study on the Design and Electrical Characteristics of High Performance Smart Power Device (고성능 Smart Power 소자 설계 및 전기적 특성에 관한 연구)

  • Ku, Yong-Seo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the high performance BCD device structure which satisfies the high voltage and fast switching speed characteristics is devised. Through the process and device simulation, optimal process spec. & device spec. are designed. We adapt double buried layer structure, trench isolation process, n-/p-drift region formation and shallow junction technology to optimize an electrical property as mentioned above. This I.C consists of 20V level high voltage bipolar npn/pnp device, 60V level LDMOS device, a few Ampere level VDMOS, 20V level CMOS device and 5V level logic CMOS.

  • PDF

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Development of a Hybrid Mount System Combined Airspring with Piezostack Actuator for Microvibration (공기스프링과 압전작동기를 결합한 복합형 미진동 방진마운트 시스템 개발)

  • Moon, S.J.;Jung, H.J.;Shin, Y.H.;Jang, D.D.;Jeong, J.A.;Moon, Y.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • A new hybrid mount system is proposed for microvibration control in a high-tech factory. The mount consists of an airspring as a passive device and a piezostack actuator as an active device. The two devices are connected in series. Some numerical simulations and experimental tests are carried out to evaluate isolation performance of the mount system comprising of four proposed hybrid mounts. As a control logic, the specific algorithm is adopted for considering multiple target frequencies of excitation based on a Filtered-X LMS algorithm. The results are compared with isolation performance of the passive airspring mount system. It is confirmed that the proposed hybrid mount system has great performance on microvibration.

A study of EPD for Shallow Trench Isolation CMP by HSS Application (HSS을 적용한 STI CMP 공정에서 EPD 특성)

  • Kim, Sang-Yong;Kim, Yong-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.35-38
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.l8um semiconductor device. Through reverse moat pattern process, reduced moat density at high moat density, STI CMP process with low selectivity could be to fit polish uniformity between low moat density and high moat density. Because this reason, in-situ motor current end point detection method is not fit to the current EPD technology with the reverse moat pattern. But we use HSS without reverse moat pattern on STI CMP and take end point current sensing signal.[1] To analyze sensing signal and test extracted signal, we can to adjust wafer difference within $110{\AA}$.

  • PDF

A New Structure of SOI MOSFETs Using Trench Mrthod (트랜치 기법을 이용한 SOI MOSFET의 전기적인 특성에 관한 연구)

  • Park, Yun-Sik;Sung, Man-Young;Kang, Ey-Goo
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.67-70
    • /
    • 2003
  • In this paper, propose a new structure of MOFET(Metal-Oxide-Semiconductor Field Effect Transistor) which is widely application for semiconductor technologies. Eleminate the latch-up effect caused by closed devices when conpose a electronic circuit using proposed devices. In this device have a completely isolation structure, and advantage of leakage current elimination. Each independent devices are isolated by trench-well and oxide layer of SOI substrate. Using trench gate and self aligned techniques reduces parasitic capacitance between gate and source, drain. In this paper, we proposed the new structure of SOI MOSFET which has completely isolation and contains trench gate electrodes and SOI wafers. It is simulated by MEDICI that is device simulator.

  • PDF

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.