• Title/Summary/Keyword: iron superoxide dismutase 2

Search Result 34, Processing Time 0.023 seconds

Heavy metal toxicity mitigation by iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2) (Streptomyces coelicolor A3(2)의 철 함유 superoxide dismutase 2에 의한 중금속 독성 완화)

  • Kim, Jae-heon;Lee, Hyeon-kyoung
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.118-122
    • /
    • 2017
  • Bacterial growth inhibition by lead, zinc and cadmium was measured by using modified Tris minimal medium. The toxicity against Escherichia coli strain was in the order of zinc> cadmium> lead, and the Escherichia coli strain overexpressing iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2) was found to have resistance to heavy metals.

Secretion of the iron containing superoxide dismutase of Streptomyces subrutilus P5 (Streptomyces subrutilus P5가 생산하는 철 함유 superoxide dismutase의 분비)

  • Park, Jae-seung;Kim, Jae-heon
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • We tried to analyze the growth time for secretion of the iron containing superoxide dismutase by comparing the intra-and extracellular enzyme activity from Streptomyces subrutilus P5 and analyze possible genetic information for this enzyme secretion. The mycelial dry weights and glucose concentrations in culture filtrates were determined during growth. Glucose was consumed rapidly during logarithmic growth phase and almost exhausted at 24 h of cultivation. While the intracellular activity of iron containing superoxide dismutase was first appeared at three hours, the extracellular activity of this enzyme appeared from 7.5 h of cultivation, early logarithmic growth phase. This early presence of the superoxide dismutase might not be the result of cell lysis but active secretion pathway. There was no information for signal peptide responsible for the enzyme secretion in sodF. However, we found a type three secretion box in the promoter region of sodF that has been known for the genes of type III secreted proteins in other bacteria. This is the first report on the possible existence of type III secretion in Streptomyces.

Induction of Iron Superoxide Dismutase by Paraquat and Iron in Vitreoscilla $C_1$ (Vitreoscilla $C_1$에서 paraquat와 Iron에 의한 Iron Superoxide Dismutase의 유도)

  • 박기인
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.517-521
    • /
    • 2003
  • Superoxide dismutase which is metalloenzyme that decomposes superoxide radicals into hydrogen peroxide and molecular oxygen. Vitreoscilla has FeSOD. Expression of FeSOD to paraquat was largely constitutive. This suggests that the basal level of FeSOD is sufficient to provide protection against superoxide generated during normal aerobic metabolism. Induction of SOD by iron supports that insertion of the active site metal into the corresponding apoprotein. The effect of paraquat on induction by iron seemed that iron brought the synergism effect in SOD activity with paraquat. It suggests that the relief of growth inhibition is due to protection against the lethality of O$_2$afforded by the elevated SOD. There may be control of FeSOD activity posttranslationally. Posttranslation control of enzyme function is particularly feasible for a metalloenzyme, for which conversion of apo- to holoenzyme may be the rate-limiting or regulatory step.

Selection and Cultivation of Microorganism Producing Iron Superoxide Dismutase(Fe-SOD) (Iron Superoxide Dismutase( Fe-SOD)를 생산하는 미생물의 선발 및 배양)

  • 이태호;정숙현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.1020-1026
    • /
    • 1994
  • Pseudomonas plycolor was used to investigated the optimal culture condition to examine the various properties of superoxide dismutase (SOD). this SOD was inhibited by $H_2O_2$, azide ion, but not by cyanide ion. This result indicates that the enzyme might be a Fe-SOD. The composition of optimal culture medium for the enzyme production was 3% of glycerin, 1% of polypeptone, 0.5% of meat extract, 0.2% of KCI and the initial ph was 9.0 . The cultivation for the enzyme production was carried out in 500ml shaking flask containing 100ml of the optimal medium at $30^{\circ}C$ on a reciprocal shaker. The enzyme production reached maximum at 15hrs of cultivation and then declined sharply afterward.

  • PDF

Molecular Cloning of the Superoxide Dismutase Gene from Orientia tsutsugamushi, the Causative Agent of Scrub Typhus

  • Koh, Young-Sang;Yun, Ji-Hyun;Kim, Se-Jae
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.151-155
    • /
    • 2002
  • A Superoxide Dismutase (SOD) gene from the obligate intracellular bacterium Orientia tsutsugamushi has been cloned by using the polymerase chain reaction with degenerate oligonucleotide primers corresponding to conserved regions of known SODs. Nucleotide sequencing revealed that the predicted amino acid sequence was significantly more homologous to known iron-containing SODs (FeSOD) than to manganese-containing SODs (MnSOD). Conserved regions in bacterial FeSOD could also be seen. Isolation of the oriential SOD gene may provide an opportunity to examine its role in the intracellular survival of this bacterium.

A Cu, Zn superoxide dismutase (SOD1) from Cordyceps militaris: cDNA cloning, expression and characterization

  • Park, Nam-Sook;Lee, Sang-Mong;Sohn, Hung-Dae;Jin, Byung-Rae
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.66-70
    • /
    • 2003
  • The first line of antioxidant defense against reactive oxygen species includes the enzymatic activity of the superoxide dismutase (SOD) that catalyzes the disproportionation of superoxide to hydrogen peroxide and water. The SOD mainly removes highly toxic $O_2$$^{[-10]}$ and also prevents $O_2$$^{[-10]}$ mediated reduction of iron and subsequent OH$^{[-10]}$ generation. Along with an interest in SOD as a first line of defense against damage mediated by the superoxide anion, the SOD1 enzyme has been subjected to investigation in the molecular and cellular level. (omitted)

  • PDF

False Positive SOD Activity of Bifidobacterium spp. Grown in MRS Medium

  • Chang, Woo-Suk;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 1998
  • The superoxide dismutase (SOD) activity of seven Bifidobacterium spp. strains was examined by an indirect SOD assay method. Some Bifidobacterium spp. showed significant levels of SOD activity. However, we could not observe any significant differences between anaerobic and aerobic cultures. Furthermore, although several Bifidobacterium spp. exhibited some degree of tolerance to paraquat which produces superoxide radicals, the apparent SOD activity of these strains was not correlated with their resistance to paraquat. In addition, when we added increasing amounts of manganese or iron to MRS medium which had been prepared without either of the metal ions, the apparent SOD activity of cell free extracts (CFEs) was increased with increasing concentration of both metal ions. To our surprise, the heat-denatured CFEs also showed nearly identical correlative patterns. Based on these results, the apparent SOD activity was likely due to a nonenzymatic dismutation. These results strongly suggest that high concentration of divalent metal ions ($Mn^{2+}$, $Fe^{2+}$) in MRS medium result in nonenzymatic dismutation which can lead to false positive SOD activities in Bifidobacerium spp.

  • PDF

Comparison of genetic structure of the Cu,Zn superoxide dismutase (SOD1) from Cordyceps militaris, Paecillomyces tenuipes and P.sinensis

  • Park, Nam-Sook;Lee, Sang-Mong;Sohn, Hung-Dae;Jin, Byung-Rae
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • Superoxide dismutase (SOD), one of the essential element of the antioxidant defense system, mainly removes $O^{-10}$ $_2$ and also prevents $O^{-10}$ $_2$ mediated reduction of iron and subsequent OH$^{-10}$ generation, which is highly toxic to the organism. Of these SOD enzymes, Cu, Zn-containing SOD (SODI) is an important component of the antioxidant defense system in eucaryotic cells. The SODI enzyme binds one copper and one zinc ion and displays the Greek Key $\beta$-barrel fuld. (omitted)

  • PDF

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Impact of iron deficiency anemia on chronic periodontitis and superoxide dismutase activity: a cross-sectional study

  • Chakraborty, Souvik;Tewari, Shikha;Sharma, Rajinder Kumar;Narula, Satish Chander;Ghalaut, Pratap Singh;Ghalaut, Veena
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.2
    • /
    • pp.57-64
    • /
    • 2014
  • Purpose: Both chronic periodontitis (CP) and iron deficiency anemia (IDA) induce oxidative stress in the body and cause an imbalance between reactive oxygen species and antioxidants, such as superoxide dismutase (SOD). This study explored the SOD enzyme activity of saliva and serum in CP patients with and without IDA and analyzed the impact of IDA on CP. Methods: A total of 82 patients were divided into four groups: control group (CG, 22), periodontally healthy IDA patients (IDA-PH, 20), CP patients (CP, 20), and IDA patients with CP (IDA-CP, 20). After clinical measurements and samplings, serum and salivary SOD levels were determined using an SOD assay kit. Results: IDA-CP patients exhibited a higher gingival index, bleeding on probing, probing pocket depth, and percentage (%) of sites with a clinical attachment loss (CAL) of ${\geq}6mm$ (P<0.008) than CP patients. The mean salivary and serum SOD levels were significantly lower in the IDA-PH, CP, and IDA-CP patients than in the CG group (P<0.008). A significant positive correlation between salivary and serum SOD activity was observed in IDA (P<0.05). Furthermore, serum and salivary SOD levels were significantly and negatively correlated with all periodontal parameters including the percentage of sites with CAL of 4-5 and ${\geq}6mm$ (P<0.05) except the significant correlation between salivary SOD activity and mean CAL and the percentage of sites with CAL of 4-5 mm (P>0.05) in these patients. Conclusions: Within the limits of this study, it may be suggested that IDA patients with chronic periodontitis have more periodontal breakdowns than patients with chronic periodontitis. Serum and salivary SOD activity levels were lower in the IDA-PH, CP and IDA-CP groups than in the CG. Iron deficiency anemia influenced the serum SOD activity but did not seem to affect the salivary SOD activity in these patients.