Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7013

Heavy metal toxicity mitigation by iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2)  

Kim, Jae-heon (Department of Microbiology, Dankook University)
Lee, Hyeon-kyoung (Department of Microbiology, Dankook University)
Publication Information
Korean Journal of Microbiology / v.53, no.2, 2017 , pp. 118-122 More about this Journal
Abstract
Bacterial growth inhibition by lead, zinc and cadmium was measured by using modified Tris minimal medium. The toxicity against Escherichia coli strain was in the order of zinc> cadmium> lead, and the Escherichia coli strain overexpressing iron-containing superoxide dismutase 2 of Streptomyces coelicolor A3(2) was found to have resistance to heavy metals.
Keywords
Streptomyces coelicolor A3(2); heavy metal; resistance; iron superoxide dismutase 2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rathnayake, I.V.N., Megharaj, M., Krishnamurti, G.S.R., Bolan, N.S., and Naidu, R. 2013. Heavy metal toxicity to bacteria - Are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90, 1195-1200.   DOI
2 So, N., Rho, J., Lee, S., Hancock, I.C., and Kim, J. 2001. A leadabsorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol. Lett. 194, 93-98.   DOI
3 Babich, H. and Stotzky, G. 1978.Toxicity of zinc to fungi, bacteria, and coliphages: Influence of chloride ions. Appl. Environ. Microbiol. 36, 906-914.
4 Banjerdkij, P., Vattanaviboon, P., and Mongkolsuk, S. 2005. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl. Environ. Microbiol. 71, 1843-1849.   DOI
5 Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.   DOI
6 Bruins, M.R., Kapil, S., and Oehme, F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198-207.   DOI
7 Duruibe, J.O., Ogwuegbu, M.O.C., and Egwurugwu, J.N. 2007. Heavy metal pollution and human biotoxic effects. Int. J. Phy. Sci. 2, 112-118.
8 Capasso, C., Nazzaro, F., Marulli, F., Capasso, A., La Cara, F., and Parisi, E. 1996. Identification of a high-molecular-weight cadmiumbinding protein in copper-resistant Bacillus acidocaldarius cells. Res. Microbiol.147, 287-296.   DOI
9 Choudhury, R. and Srivastava, S. 2001. Zinc resistance mechanism in bacteria. Curr. Sci. 81, 768-775.
10 Chung, H.J., Kim, E.J., Suh, B., Choi, J.H., and Roe, J.H. 1999. Duplication genes for Fe-containing superoxide dismutase in Streptomyces coelicolor A3(2). Gene 231, 87-93.   DOI
11 Duxbury, T. 1981. Toxicity of heavy metals to soil bacteria. FEMS Microbiol. Lett. 11, 217-220.   DOI
12 Kim, J.H., Han, K.Y., Jung, H.J., and Lee, J. 2014. Iron containing superoxide dismutase of Streptomyces subrutilus P5 increases bacterial heavy metal resistance by sequestration. Korean J. Microbiol. 50, 179-184.   DOI
13 Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J., and Ma, Z. 2013. Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind. Eng. Chem. Res. 52, 11036-11044.   DOI
14 Mamtani, R., Stern, P., Dawood, I., and Cheema, S. 2011. Metals and disease: A global primary health care perspective. J. Toxicol. 2011, 1-11.
15 McDevitt, C.A., Ogunniyi, O.D., Valkov, E., Lawrence, M.C., Kobe, B., McEwan, A.G., and Paton, J.C. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7, e1002357.   DOI
16 Ong, C.Y., Walker, M.J., and McEwan, A.G. 2015. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci. Rep. 5, 10799.   DOI
17 Nies, D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750.   DOI
18 Norte, V.A., Stapleton, M.R., and Green, J. 2003. PhoP-responsive expression of the Salmonella enterica Serovar Typhimurium slyA gene. J. Bacteriol. 185, 3508-3514.   DOI
19 Olson, J.W. and Maier, R.J. 2000. Dual roles of Bradyrhizobium japonicum nickel in protein in nickel storage and GTP-dependent Ni mobilization. J. Bacteriol. 182, 1702-1705.   DOI