• Title/Summary/Keyword: iron silicate

Search Result 82, Processing Time 0.03 seconds

Farmer's Field Trial of Different Coating and Covering Materials on Rice Growth and Yield in Wet Hill Seeded Rice (볍씨 코팅 및 규산복토에 따른 벼 무논점파재배 농가실증시험연구)

  • Park, Kwang Ho;Kim, Yang Sik;Chang, Jin Tack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The experiment was conducted to evaluate rice growth and yield as affected by different coating and covering materials such as a iron, silicate, iron and silicate mixture of rice seeds in farmer's rice growing field. The tiller number was 36.7 at iron-coated seeds, 32.8 at silicate-covered seeds, 30.3 at iron and silicate mixture coated seeds and 30.2 at untreated control in 44days after seeding. The seedling height was 38.2cm of iron and silicate mixture, 37.7cm of untreated control, 36cm of iron-coated and 35.7cm of silicate covered seeds in 43days after seeding. At 75days after seeding rice tiller number was 153 of iron-coated seeds, 152 of silicate-covered seeds, 147 of untreated seeds and 141 of iron and silicate mixture-coated seeds and also there were different plant height growth of 87.4cm in silicate-covered seeds, 85.7cm in iron and silicate mixture, 85.4cm in untreated control and 83.0cm in iron-coated seeds. The panicle length was of 21.0cm in iron and silicate mixture coated seeds, 20.8cm in silicate covered seeds, 20.7cm in untreated control seeds and 20.6cm in iron-coated seeds. The panicle number was 464 at iron-coated seeds, 404 at untreated control seeds, 427 at silicate-covered seeds and 412 at iron and silicate mixture coated seeds. The spikelet number per m2 was of 32,503 in iron-coated seeds, 31,813 in silicate-covered seeds, 29,646 in untreated control, 28,896 in iron and silicate mixture coated seeds. The ripened ratio of rice grain was of 94.5% at iron-coated seeds, 93.9% at iron and silicate mixture coated seeds, 93.6% at silicate covered seeds and 93.2% at untreated control seeds. The rice yield was of 591kg/10a at iron-coated seeds, 580kg/10a at silicate-covered seeds, 571kg/10a at iron and silicate mixture-coated seeds and 539kg/10a at untreated control.

Effect of Different Seed Coating Materials on Seedling Establishment and Growth in Direct Seeded Rice under Puddled Wet Soil Condition (벼 무논직파재배의 종자 코팅소재별 발아 및 유묘생육 특성)

  • Park, K.H;Kim, Y.S.;Chang, J.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • The research was conducted to determine a seed germination and seedling establishment of rice plant under seed coating materials such as iron, silicate, and phyllite and under covered with silicate and iron coated & silicate covered in the puddled wet hill seeding and wet line seeding methods. The seedling establishment was high in silicate and untreated control of 100%>phyllite coating of 91.5%>silicate coating of 88%>iron coating and silicate covered of 86%>silicate covered of 75.5% in the puddled wet hill seeding method, respectively. At 35days after treatment there was high in seedling height at silicate covered of 23.8cm>control of 23.6cm>silicate coating of 21.4cm>phyllite coating of 20.2cm>iron coating and silicate covered of 16.8cm>iron coating of 15.4cm. In puddle wet line seeding method rice seedling establishment was high at control and silicate covered of 100%>iron coating and silicate covered by 97.5%>phyllite coating by 94.8%>iron coating by 86%. Seedling height was high in silicate covered of 22.1cm>control of 21.2cm>silicate coating of 20.0cm>phyllite coating of 19.0cm>iron coating of 17.7cm>iron coating and silicate covered of 17.0cm, respectively.

Seed germination and seedling growth as affected by the coating materials of rice seed in the submerged soil (벼 종자의 코팅소재별 발아 및 유묘생육 특성)

  • Park, K.H.;Kang, Y.K.;Oh, D.G.;Kim, Y.S.;Chang, J.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • The study was performed to evaluate rice seed germination, seedling emergence and seedling establishment under different coating materials such as iron powder, silicate powder and silicate coverage after direct seeding. There were differences among coating materials as follows; 1. In seedling establishment there was the highest in untreated control> silicate-coated seeds and silicate coverage>iron-coated seeds. In case of untreated control this result due to laboratory experiment unlike field conditions where has been constraints in bird damages, seed dry under strong sunlight and buoyance after rainy and/or irrigation. 2. Thus, there was the highest in untreated control>silicate-coated seeds>silicate coverage>iron-coated seeds, respectively. 3. Total fresh weight(shoots and roots) of the seedling was also highest in untreated control>silicate-coated seeds and silicate coverage> iron-coated seeds.

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Kim, Seung-Soo;Min, Jae-Ho;Baik, Min-Hoon;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.945-952
    • /
    • 2012
  • The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

Effect of Spinning Speed on 29Si and 27Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses (시료의 회전 속도가 함철 비정질 규산염의 고상 NMR 신호에 미치는 영향)

  • Kim, Hyo-Im;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.295-306
    • /
    • 2018
  • Despite the utility of solid-state NMR, NMR studies of iron-bearing silicate glasses remain a challenge because the variations in the peak position and width with increasing iron content reflect both paramagnetic effect and iron-induced structural changes. Therefore, it is essential to elucidate the effect of temperature on the NMR signal for iron-bearing silicate glasses. Here, we report the $^{29}Si$ and $^{27}Al$ MAS NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ and $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ (anorthite) glasses with varying spinning speed to interpret the NMR spectra for iron-bearing silicate glasses. The increase in the spinning speed results in an increase in the sample temperature. The current NMR results allow us to understand the origins of the changes in NMR signal with increasing iron content and to provide information on the dipolar interaction between nuclear spins. The $^{29}Si$ NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ glass and $^{27}Al$ NMR spectra for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses show that the peak shape and position of iron-bearing glasses do not change with increasing spinning speed up to 30 kHz. These results suggest that the NMR signal in the Fe-bearing glasses may stem from the 'survived nuclear spins' beyond the cutoff radius from the Fe, not from the paramagnetic shift. Based on the current results, the observed apparent shifts toward lower frequency of Al peak for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses with increasing $Fe_2O_3$ at all spinning speed (15 kHz to 30 kHz) indicate the increase in the fraction of ${Q^4}_{Al}$(nSi) with lower n (i.e., 1 or 2) with increasing $Fe_2O_3$ and the spatial proximity between Fe and ${Q^4}_{Al}$(nSi) with higher n (i.e., 3 or 4). The present results show that changes in the NMR signal for iron-bearing silicate glasses reflect the actual iron-induced structural changes. Thus, it is clear that the applications of solid-state NMR for iron-bearing silicate glasses hold strong promise for unraveling the atomic structure of natural silicate glasses.

Surface Modification of Iron Oxide Particle by Silica-contained Materials (실리카계 물질에 의한 산화철 입자의 표면개질)

  • Ryu, Beyong-Hwan;Lee, Jung-Min;Koh, Jae-Cheon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.830-836
    • /
    • 1997
  • The surface modification of iron oxide particle produced from steel-pickled acid by sodium-contained materials was studied. The molar ratio of $SiO_2$ to $Na_2O$ of sodium silicate was 1, 2, 3.5, respectively. The dispersion stability of iron oxide suspension as functions of amount of silica and pH was evaluated by surface charge and sedimentation velocity of iron oxide particle. Then the amount of sodium silicate was determined to provide a dispersion stability of iron oxide particle above pH 7. Finally, the surface modification of iron oxide particle with sodium silicate as silica-contained materials was done by wet ball milling. In the results of study, the dispersion stability of silica modified iron oxide particle was largely depended on amount of silica and pH together. The untreated iron oxide was unstable at pH 8, i.e. isoelectric point, but, the surface modified iron oxide particle with 0.8wt% silica was stable above pH 5. The dispersion stability was enhanced with 0.2wt% of anionic polyelectrolyte.

  • PDF

Chemical Strengthening Involving Outward Diffusion Process of Na+ Ion in Iron-containing Soda-lime Silicate Glass

  • Choi, Hyun-Bin;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.133-136
    • /
    • 2015
  • The outward diffusion of $Na^+$ ions in iron-bearing soda lime silicate glass via oxidation heat treatment before the ion exchange process is artificially induced in order to increase the amount of ions exchanged during the ion exchange process. The effect of the addition process is analyzed through measuring the bending strength, the weight change, and the inter-diffusion coefficient after the ion exchange process. The glass strength is increased when the outward diffusion of $Na^+$ ions via oxidation heat treatment before the ion exchange process is added. For the glass subjected to the additional process, the weight change and diffusion depth increase compared with the glass not subjected to the process. The interdiffusion coefficient is also slightly increased as a result of the additional process.

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.