Browse > Article
http://dx.doi.org/10.9727/jmsk.2018.31.4.295

Effect of Spinning Speed on 29Si and 27Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses  

Kim, Hyo-Im (School of Earth and Environmental Science, Seoul National University)
Lee, Sung Keun (School of Earth and Environmental Science, Seoul National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.31, no.4, 2018 , pp. 295-306 More about this Journal
Abstract
Despite the utility of solid-state NMR, NMR studies of iron-bearing silicate glasses remain a challenge because the variations in the peak position and width with increasing iron content reflect both paramagnetic effect and iron-induced structural changes. Therefore, it is essential to elucidate the effect of temperature on the NMR signal for iron-bearing silicate glasses. Here, we report the $^{29}Si$ and $^{27}Al$ MAS NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ and $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ (anorthite) glasses with varying spinning speed to interpret the NMR spectra for iron-bearing silicate glasses. The increase in the spinning speed results in an increase in the sample temperature. The current NMR results allow us to understand the origins of the changes in NMR signal with increasing iron content and to provide information on the dipolar interaction between nuclear spins. The $^{29}Si$ NMR spectra for $(Mg_{0.95}Fe_{0.05})SiO_3$ glass and $^{27}Al$ NMR spectra for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses show that the peak shape and position of iron-bearing glasses do not change with increasing spinning speed up to 30 kHz. These results suggest that the NMR signal in the Fe-bearing glasses may stem from the 'survived nuclear spins' beyond the cutoff radius from the Fe, not from the paramagnetic shift. Based on the current results, the observed apparent shifts toward lower frequency of Al peak for $Fe_2O_3$-bearing $CaAl_2Si_2O_8$ glasses with increasing $Fe_2O_3$ at all spinning speed (15 kHz to 30 kHz) indicate the increase in the fraction of ${Q^4}_{Al}$(nSi) with lower n (i.e., 1 or 2) with increasing $Fe_2O_3$ and the spatial proximity between Fe and ${Q^4}_{Al}$(nSi) with higher n (i.e., 3 or 4). The present results show that changes in the NMR signal for iron-bearing silicate glasses reflect the actual iron-induced structural changes. Thus, it is clear that the applications of solid-state NMR for iron-bearing silicate glasses hold strong promise for unraveling the atomic structure of natural silicate glasses.
Keywords
Iron-bearing silicate glasses; solid-state NMR; paramagnetic effect; glass structure; spinning speed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barron, P.F., Frost, R.L., and Skjemstad, J.O. (1983) $^{29}Si$ spin-lattice relaxation in aluminosilicates. Journal of the Chemical Society-Chemical Communications, 581-583.
2 Bertini, I., Emsley, L., Lelli, M., Luchinat, C., Mao, J.F., and Pintacuda, G. (2010) Ultrafast MAS Solid-State NMR Permits Extensive C-13 and H-1 Detection in Paramagnetic Metalloproteins. Journal of the American Chemical Society 132, 5558-5559.   DOI
3 Bertini, I., Luchinat, C., and Parigi, G. (2002) Magnetic susceptibility in paramagnetic NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 40, 249-273.   DOI
4 Bielecki, A. and Burum, D.P. (1995) Temperature-dependence of $^{207}Pb$ MAS spectra of solid lead nitrate - An accurate, sensitive thermometer for variable-temperature MAS. Journal of Magnetic Resonance Series A 116, 215-220.   DOI
5 Davis, M.C., Sanders, K.J., Grandinetti, P.J., Gaudio, S.J., and Sen, S. (2011) Structural investigations of magnesium silicate glasses by $^{29}Si$ 2D Magic-Angle Flipping NMR. Journal of Non-Crystalline Solids 357, 2787-2795.   DOI
6 Di Genova, D., Kolzenburg, S., Wiesmaier, S., Dallanave, E., Neuville, D.R., Hess, K.U., and Dingwell, D.B. (2017a) A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. Nature 552, 235-238.   DOI
7 Di Genova, D., Vasseur, J., Hess, K.U., Neuville, D.R., and Dingwell, D.B. (2017b) Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts. Journal of Non-Crystalline Solids 470, 78-85.   DOI
8 Grey, C.P. and Dupre, N. (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chemical Reviews 104, 4493-4512.   DOI
9 Grimmer, A.R., Vonlampe, F., Magi, M., and Lippmaa, E. (1983) Solid-state high-resolution $^{29}Si$ NMR of silicates: Influence of $Fe^{2+}$ in olivines. Zeitschrift Fur Chemie 23, 343-344.
10 Kim, H.-I. and Lee, S.K. (2018) Structure and disorder in $(Mg,Fe)SiO_3$ glasses and melts: Insights from high-resolution $^{29}Si$ and $^{17}O$ solid-state NMR. submitted.
11 Kim, H.-I., Sur, J.C., and Lee, S.K. (2016) Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution $^{29}Si$ and $^{17}O$ solid-state NMR study. Geochimica et Cosmochimica Acta 173, 160-180.   DOI
12 Laage, S., Sachleben, J.R., Steuernagel, S., Pierattelli, R., Pintacuda, G., and Emsley, L. (2009) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. Journal of Magnetic Resonance 196, 133-141.   DOI
13 Kim, J., Li, W., Philips, B.L., and Grey, C.P. (2011) Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study. Energy & Environmental Science 4, 4298-4305.   DOI
14 Kubicki, J.D. and Lasaga, A.C. (1991) Molecular-dynamics simulations of pressure and temperature effects on $MgSiO_3$ and $Mg-_2SiO_4$ melts and glasses. Physics and Chemistry of Minerals 17, 661-673.
15 Kurland, R.J. and McGrarvey, B.R. (1970) Isotropic NMR shifts in transition metal complexes: The calculation of the Fermi contact and pseudocontact terms. Journal of Magnetic Resonance 2, 286-301.
16 Langer, B., Schnell, L., Spiess, H.W., and Grimmer, A.R. (1999) Temperature calibration under ultrafast MAS conditions. Journal of Magnetic Resonance 138, 182-186.   DOI
17 Lee, J., Seymour, L.D., Pell, A.J., Dutton, S.E., and Grey, C.P. (2017) A systematic study of Mg-25 NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials. Physical Chemistry Chemical Physics 19, 613-625.   DOI
18 Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochimica et Cosmochimica Acta 69, 3695-3710.   DOI
19 Lee, S.K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America 108, 6847-6852.   DOI
20 Lee, S.K., Eng, P.J., and Mao, H.K. (2014) Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure, in: Henderson, G.S., Neuville, D.R., Downs, R.T. (Eds.), Spectroscopic Methods in Mineralology and Materials Sciences, pp. 139-174.
21 Lee, S.K., Kim, H.I., Kim, E.J., Mun, K.Y., and Ryu, S. (2016) Extent of disorder in magnesium aluminosilicate glasses: Insights from $^{27}Al$ and $^{17}O$ NMR. Journal of Physical Chemistry C 120, 737-749.
22 Lee, S.K., Kim, Y.H., Chow, P., Xiao, Y.M., Ji, C., and Shen, G.Y. (2018) Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America 115, 5855-5860.   DOI
23 Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist 84, 937-945.   DOI
24 Lee, S.K. and Stebbins, J.F. (2009) Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: An $^{17}O$ NMR study. Geochimica et Cosmochimica Acta 73, 1109-1119.   DOI
25 Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., and Hawthorne, F.C. (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: An $^{11}B$ and $^{27}Al$ MAS NMR study. American Mineralogist 94, 785-792.   DOI
26 Mysen, B.O. and Richet, P. (2005) Silicate glasses and melts: Properties and structure. Elsevier, Amsterdam.
27 Navrotsky, A., Peraudeau, G., McMillan, P., and Coutures, J.P. (1982) A thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate. Geochimica et Cosmochimica Acta 46, 2039-2047.   DOI
28 Palke, A.C. and Stebbins, J.F. (2011) Variable-temperature $^{27}Al$ and $^{29}Si$ NMR studies of synthetic forsterite and Fe-bearing Dora Maira pyrope garnet: Temperature dependence and mechanisms of paramagnetically shifted peaks. American Mineralogist 96, 1090-1099.   DOI
29 Neue, G. and Dybowski, C. (1997) Determining temperature in a magic-angle spinning probe using the temperature dependence of the isotropic chemical shift of lead nitrate. Solid State Nuclear Magnetic Resonance 7, 333-336.   DOI
30 Oestrike, R., Yang, W.H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A., and Montez, B. (1987) High-resolution $^{23}Na$, $^{27}Al$, and $^{29}Si$ NMR spectroscopy of framework aluminosilicate glasses. Geochimica et Cosmochimica Acta 51, 2199-2209.   DOI
31 Palke, A.C., Stebbins, J.F., Geiger, C.A., and Tippelt, G. (2015) Cation order-disorder in Fe-bearing pyrope and grossular garnets: A $^{27}Al$ and $^{29}Si$ MAS NMR and $^{57}Fe$ Mossbauer spectroscopy study. American Mineralogist 100, 536-547.   DOI
32 Park, S.Y. and Lee, S.K. (2009) Probing atomic structure of quarternary aluminosilciate glasses using solid-state NMR. Jornal of Mineralogical Society of Korea 22, 343-352.
33 Park, S.Y. and Lee, S.K. (2014) High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: Implications for structure of andesitic melts. Geochimica et Cosmochimica Acta 147, 26-42.   DOI
34 Smith, K.A., Kirkpatrick, R.J., Oldfield, E., and Henderson, D.M. (1983) High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. American Mineralogist 68, 1206-1215.
35 Park, S.Y. and Lee, S.K. (2018) Probing the structure of Fe-free model basaltic glasses: A view from a solid-state $^{27}Al$ and $^{17}O$ NMR study of Na-Mg silicate glasses, $Na_2O-MgO-Al_2O_3-SiO_2$ glasses, and synthetic Fe-free KLB-1 basaltic glasses. Geochimica et Cosmochimica Acta 238, 563-579.   DOI
36 Richet, P. (1984) Viscosity and configurational entropy of silicate melts. Geochimica et Cosmochimica Acta 48, 471-483.   DOI
37 Sen, S., Maekawa, H., and Papatheodorou, G.N. (2009) Short-range structure of invert glasses along the pseudo-binary join $MgSiO_3-Mg_2SiO_4$: Results from $^{29}Si$ and $^{25}Mg$ MAS NMR spectroscopy. Journal of Physical Chemistry B 113, 15243-15248.   DOI
38 Stebbins, J.F. (2017) Toward the wider application of Si-29 NMR spectroscopy to paramagnetic transition metal silicate minerals: Copper(II) silicates. American Mineralogist 102, 2406-2414.   DOI
39 Stebbins, J.F., Kroeker, S., Lee, S.K., and Kiczenski, T.J. (2000) Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution Al-27 NMR. Journal of Non-Crystalline Solids 275, 1-6.   DOI
40 Stebbins, J.F. and Kelsey, K.E. (2009) Anomalous resonances in $^{29}Si$ and $^{27}Al$ NMR spectra of pyrope ($[Mg,Fe]_3Al_2Si_3O_{12}$) garnets: Effects of paramagnetic cations. Physical Chemistry Chemical Physics 11, 6906-6917.   DOI
41 Stebbins, J.F., Panero, W.R., Smyth, J.R., and Frost, D.J. (2009) Forsterite, wadsleyite, and ringwoodite ($Mg_2SiO_4$): $^{29}Si$ NMR constraints on structural disorder and effects of paramagnetic impurity ions. American Mineralogist 94, 626-629.   DOI
42 Stebbins, J.F. and Xue, X. (2014) NMR spectroscopy of inorganic Earth materials, in: Henderson, G.S., Neuville, D.R., Downs, R.T. (Eds.), Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Chantilly, Virginia, pp. 605-653.
43 Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_3$ liquid in Earth's lower mantle. Science 310, 297-299.   DOI
44 Takahashi, T., Kawashima, H., Sugisawa, H., and Baba, T. (1999) Pb-207 chemical shift thermometer at high temperature for magic angle spinning experiments. Solid State Nuclear Magnetic Resonance 15, 119-123.   DOI