DOI QR코드

DOI QR Code

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Received : 2012.02.09
  • Accepted : 2012.03.29
  • Published : 2012.12.25

Abstract

The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

Keywords

References

  1. Y. S. Hwang and C. H. Kang, "The Development of a Safety Assessment Approach and Its Implication on the Advanced Nuclear Fuel Cycle," Nucl. Eng. Technol., 42, pp. 37-46 (2010). https://doi.org/10.5516/NET.2010.42.1.037
  2. N. K. Ishikawa, Y. Nakamaru, K. Tagami and S. Uchida, "Sorption Behavior of Selenium on Humic Acid under Increasing Selenium Concentration or Increasing Solid/ Liquid Ratio," J. Environ. Radioactivity, 99, pp. 993-1002 (2008). https://doi.org/10.1016/j.jenvrad.2007.11.005
  3. G. Jorg, R. Buhnemann, S. Hollas, N. Kivel, K. Kossert, S. Van Winckel, V. Lierse and Ch. Gostomski, "Precipitation of Radiochemically Pure $^{79}Se$ and Highly Precise Determination of Its Half-life," Appl. Radiat. Isotopes, 68, pp. 2339- 2351 (2010). https://doi.org/10.1016/j.apradiso.2010.05.006
  4. N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J. J. Ehrhart, "Sorption of Selenium(IV) onto Magnetite in the Present of Silicic Acid," Colloid Inter. Sci., 329, pp. 17-23 (2009). https://doi.org/10.1016/j.jcis.2008.09.052
  5. A. C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez- Martinez, H. Zaenker, H. Funke and L. Charlet, "X-ray Absorption and Photoelectron Spectroscopy Investigation of Selenite Reduction by Fe(II)-Bearing Minerals," Contam. Hydrol., 102, pp. 228-245 (2008). https://doi.org/10.1016/j.jconhyd.2008.09.018
  6. M. Martınez, J. Gimenez, J. de Pablo, M. Rovira and L. Duro, "Sorption of Selenium(IV) and Selenium(VI) onto Magnetite," Appl. Surf. Sci., 252, pp. 3767-3773 (2006). https://doi.org/10.1016/j.apsusc.2005.05.067
  7. M. Duc, G. Lefevre and M. Fedoroff, "Sorption of Selenite Ions on Hematite," Colloid Inter. Sci., 298, pp. 556-563 (2006). https://doi.org/10.1016/j.jcis.2006.01.029
  8. M. Rovira, J. Gimenez, M. Martinez, X. Martinez-Llado, J. de Pablo, V. Marti and L. Duro, "Sorption of Selenium (IV) and Selenium(VI) onto Natural Iron Oxides: Goethite and Hematite," J. Hazard. Mater., 150, pp. 279-284 (2007).
  9. C. Su and D. L. Suarez, "Selenate and Selenite Sorption on Iron Oxides; An Infrared and Electrophoretic Study," Soil Sci. Soc. Am. J., 64, pp. 101-111 (2000). https://doi.org/10.2136/sssaj2000.641101x
  10. L. Charlet, A. C. Scheinost, C. Tournassat, J. M. Greneche, A. Gehin, A. Fernandez-Martınez, S. Coudert, D. Tisserand and J. Brendle, "Electron Transfer at the Mineral/Water Interface: Selenium Reduction by Ferrous Iron Sorbed on Clay," Geochim. Cosmochim. Acta, 71, pp. 5731-5749 (2007). https://doi.org/10.1016/j.gca.2007.08.024
  11. T. Missana, U. Alonso, A. C. Scheinost, N. Granizo and M. Garcıa-Gutierrez, "Selenite Retention by Nanocrystalline Magnetite: Role of Adsorption, Reduction and Dissolution /Coprecipitation Processes," Geochim. Cosmochim. Acta, 73, pp. 6205-6217 (2009). https://doi.org/10.1016/j.gca.2009.07.005
  12. S. S. Kim, K. S. Chun, K. C. Kang, M. H. Baik, S. H. Kwon and J. W. Choi, "Estimation of the Corrosion Thickness of a Disposal Container for High-Level Radioactive Wastes in a Wet Bentonite," J. Ind. Eng. Chem., 13(6), pp. 959-964 (2007).
  13. L. Balistrieri and T. T. Chao, "Selenium Adsorption by Goethite," Soil Sci. Soc. Am. J., 51, pp. 1145-1151 (1987). https://doi.org/10.2136/sssaj1987.03615995005100050009x
  14. L. Balistrieri and T. T. Chao, "Adsorption of Selenium by Amorphous Iron Oxyhydroxides and Manganese Dioxide," Geochim. Cosmochim. Acta, 54, pp. 739-751 (1990). https://doi.org/10.1016/0016-7037(90)90369-V
  15. F. Dang, N. Enomoto, J. Hojo and K. Enpuku, "Sonochemical Synthesis of Monodispersed Magnetite Nanoparticles by Using an Ethanol-Water Mixed Solvent," Ultrason. Sonochem., 16, pp. 649-654 (2009). https://doi.org/10.1016/j.ultsonch.2008.11.003
  16. A. G. B. Williams and M. M. Scherer, "Kinetics of Cr(VI) Reduction by Carbonate Green Rust," Environ. Sci. Technol., 35, pp. 3488-3494 (2001). https://doi.org/10.1021/es010579g
  17. S. Kaufhold, M. Pohlmann-Lortz, R. Dohrmann and R. Nüesch, "About the Possible Upgrade of Bentonite with Respect to Iodide Retention Capacity," Appl. Clay Sci., 35, pp. 39-46 (2007). https://doi.org/10.1016/j.clay.2006.08.001
  18. G. Alfthan, D. Wang, A. Area and J. Soverib, "The Geochemistry of Selenium in Groundwaters in Finland," The Science of the Total Environment, 162, pp. 93-103 (1995). https://doi.org/10.1016/0048-9697(95)04436-5
  19. C. Mayant, B. Grambow, A. Abdelouas, S. Ribet, and S. Leclercq, " Surface Site Density, Silicic Acid Retention and Transport Properties of Compacted Magnetite Powder," Phys. Chem. Earth, 33, pp. 991-999 (2008). https://doi.org/10.1016/j.pce.2008.05.011
  20. Morihiro Mihara, "Radio-Nuclide Migration Databases (RAMDA) for the Safety Assessment of TRU Waste Repositories in Japan," JAEA-review-2006-011, Japan Atomic Energy Agency, Japan (2006).
  21. Y. Iida, T. Yamaguchi, T. Tanaka and S. Nakayama, "Solubility of Selenium at High Ionic Strength under Anoxic Conditions," J. Nucl. Sci. Tech., 47(5), pp. 431-438 (2010). https://doi.org/10.1080/18811248.2010.9711633
  22. F. Seby, M. Potin-Gautier, E. Giffaut, G. Borge and O. F. X. Donard, "A Critical Review of Thermodynamic Data for Selenium Species at 25${^{\circ}C}$," Chem. Geol., 171, pp. 173 -194 (2001). https://doi.org/10.1016/S0009-2541(00)00246-1
  23. L. Duro, M. Grivé, E. Cera, C. Domènech and J. Bruno, "Update of a Thermodynamic Database for Radionuclides to Assist Solubility Limits Calculation for Performance Assessment," SKB-TR-06-17, Stockholm, Sweden (2006).
  24. P. D. Canniere, A. Maes, S. Williams, C. Bruggeman, T. Beauwens, N. Maes and M. Cowper, "Behavior of Selenium in Boom Clay," External Report, SCK.CEN-ER-120, Mol, Belgium (2010).
  25. I. McKinley and D. Savage, "Comparison of Solubility Databases Used for HLW Performance Assessment," J. Contam. Hydrol., 21, pp. 335-350 (1996). https://doi.org/10.1016/0169-7722(95)00057-7
  26. Y. Fujikawa and M. Fukui, "Radionuclide Sorption to Rocks and Minerals: Effects of pH and Inorganic Anions. Part 2. Sorption and Speciation of Selenium," Radiochim. Acta, 76, pp. 163-172 (1997).
  27. R. L. de Loyo, S. I. Nikitenko, A. C. Scheinost and M. Simonoff, "Immobilization of Selenite on $Fe_{3}O_{4}$ and Fe/$Fe_{3}C$ Ultrasmall Particles," Environ. Sci. Technol., 42, pp. 2451-2456 (2008). https://doi.org/10.1021/es702579w
  28. A. M. Scheidegger, D. Grolimund, D. Cui, J. Devoy, K. Spahiu, P. Wersin, I. Bonhoure and M. Janousch, "Reduction of Selenite on Iron Surfaces: a Micro-Spectroscopic Study," Phys. IV, 104, pp. 417-420 (2003).
  29. A. C. Scheinost and L. Charlet, "Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products," Environ. Sci. Technol., 42, pp. 1984-1989 (2008). https://doi.org/10.1021/es071573f
  30. C. Bruggeman, A. Maes, J. Vancluysen and P. Vandemussele, "Selenite Reduction in Boom clay: Effect of $FeS_{2}$, Clay Minerals and Dissolved Organic Matter," Environ. Pollut., 137, pp. 209-221 (2005). https://doi.org/10.1016/j.envpol.2005.02.010
  31. E. Breynaert, C. Bruggeman and A. Maes, "XANES-EXAFS Analysis of Se Solid-Phase Reaction Products Formed upon Contacting Se(IV) with FeS2 and FeS," Environ. Sci. Technol., 42, pp. 3595-3601 (2008). https://doi.org/10.1021/es071370r
  32. K. Daub, X. Zhang, J. J. Noel and J. C. Wren, "Gamma-Radiation-Induced Corrosion of Carbon Steel in Neutral and Mildly Basic Water at 150${^{\circ}C}$," Corros. Sci., 53, pp. 11-16 (2011). https://doi.org/10.1016/j.corsci.2010.09.048