Browse > Article
http://dx.doi.org/10.5516/NET.06.2012.010

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY  

Kim, Seung-Soo (Korea Atomic Energy Research Institute)
Min, Jae-Ho (Korea Atomic Energy Research Institute)
Baik, Min-Hoon (Korea Atomic Energy Research Institute)
Kim, Gye-Nam (Korea Atomic Energy Research Institute)
Choi, Jong-Won (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.44, no.8, 2012 , pp. 945-952 More about this Journal
Abstract
The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.
Keywords
Sorption; Selenite; Selenide; Iron; Iron Compounds; Bentonite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. S. Hwang and C. H. Kang, "The Development of a Safety Assessment Approach and Its Implication on the Advanced Nuclear Fuel Cycle," Nucl. Eng. Technol., 42, pp. 37-46 (2010).   DOI
2 N. K. Ishikawa, Y. Nakamaru, K. Tagami and S. Uchida, "Sorption Behavior of Selenium on Humic Acid under Increasing Selenium Concentration or Increasing Solid/ Liquid Ratio," J. Environ. Radioactivity, 99, pp. 993-1002 (2008).   DOI
3 G. Jorg, R. Buhnemann, S. Hollas, N. Kivel, K. Kossert, S. Van Winckel, V. Lierse and Ch. Gostomski, "Precipitation of Radiochemically Pure $^{79}Se$ and Highly Precise Determination of Its Half-life," Appl. Radiat. Isotopes, 68, pp. 2339- 2351 (2010).   DOI
4 N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J. J. Ehrhart, "Sorption of Selenium(IV) onto Magnetite in the Present of Silicic Acid," Colloid Inter. Sci., 329, pp. 17-23 (2009).   DOI
5 A. C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez- Martinez, H. Zaenker, H. Funke and L. Charlet, "X-ray Absorption and Photoelectron Spectroscopy Investigation of Selenite Reduction by Fe(II)-Bearing Minerals," Contam. Hydrol., 102, pp. 228-245 (2008).   DOI
6 M. Martınez, J. Gimenez, J. de Pablo, M. Rovira and L. Duro, "Sorption of Selenium(IV) and Selenium(VI) onto Magnetite," Appl. Surf. Sci., 252, pp. 3767-3773 (2006).   DOI
7 M. Duc, G. Lefevre and M. Fedoroff, "Sorption of Selenite Ions on Hematite," Colloid Inter. Sci., 298, pp. 556-563 (2006).   DOI
8 M. Rovira, J. Gimenez, M. Martinez, X. Martinez-Llado, J. de Pablo, V. Marti and L. Duro, "Sorption of Selenium (IV) and Selenium(VI) onto Natural Iron Oxides: Goethite and Hematite," J. Hazard. Mater., 150, pp. 279-284 (2007).
9 C. Su and D. L. Suarez, "Selenate and Selenite Sorption on Iron Oxides; An Infrared and Electrophoretic Study," Soil Sci. Soc. Am. J., 64, pp. 101-111 (2000).   DOI
10 L. Charlet, A. C. Scheinost, C. Tournassat, J. M. Greneche, A. Gehin, A. Fernandez-Martınez, S. Coudert, D. Tisserand and J. Brendle, "Electron Transfer at the Mineral/Water Interface: Selenium Reduction by Ferrous Iron Sorbed on Clay," Geochim. Cosmochim. Acta, 71, pp. 5731-5749 (2007).   DOI
11 T. Missana, U. Alonso, A. C. Scheinost, N. Granizo and M. Garcıa-Gutierrez, "Selenite Retention by Nanocrystalline Magnetite: Role of Adsorption, Reduction and Dissolution /Coprecipitation Processes," Geochim. Cosmochim. Acta, 73, pp. 6205-6217 (2009).   DOI
12 S. S. Kim, K. S. Chun, K. C. Kang, M. H. Baik, S. H. Kwon and J. W. Choi, "Estimation of the Corrosion Thickness of a Disposal Container for High-Level Radioactive Wastes in a Wet Bentonite," J. Ind. Eng. Chem., 13(6), pp. 959-964 (2007).
13 A. G. B. Williams and M. M. Scherer, "Kinetics of Cr(VI) Reduction by Carbonate Green Rust," Environ. Sci. Technol., 35, pp. 3488-3494 (2001).   DOI   ScienceOn
14 L. Balistrieri and T. T. Chao, "Selenium Adsorption by Goethite," Soil Sci. Soc. Am. J., 51, pp. 1145-1151 (1987).   DOI
15 L. Balistrieri and T. T. Chao, "Adsorption of Selenium by Amorphous Iron Oxyhydroxides and Manganese Dioxide," Geochim. Cosmochim. Acta, 54, pp. 739-751 (1990).   DOI
16 F. Dang, N. Enomoto, J. Hojo and K. Enpuku, "Sonochemical Synthesis of Monodispersed Magnetite Nanoparticles by Using an Ethanol-Water Mixed Solvent," Ultrason. Sonochem., 16, pp. 649-654 (2009).   DOI
17 S. Kaufhold, M. Pohlmann-Lortz, R. Dohrmann and R. Nüesch, "About the Possible Upgrade of Bentonite with Respect to Iodide Retention Capacity," Appl. Clay Sci., 35, pp. 39-46 (2007).   DOI
18 G. Alfthan, D. Wang, A. Area and J. Soverib, "The Geochemistry of Selenium in Groundwaters in Finland," The Science of the Total Environment, 162, pp. 93-103 (1995).   DOI
19 C. Mayant, B. Grambow, A. Abdelouas, S. Ribet, and S. Leclercq, " Surface Site Density, Silicic Acid Retention and Transport Properties of Compacted Magnetite Powder," Phys. Chem. Earth, 33, pp. 991-999 (2008).   DOI   ScienceOn
20 Morihiro Mihara, "Radio-Nuclide Migration Databases (RAMDA) for the Safety Assessment of TRU Waste Repositories in Japan," JAEA-review-2006-011, Japan Atomic Energy Agency, Japan (2006).
21 Y. Iida, T. Yamaguchi, T. Tanaka and S. Nakayama, "Solubility of Selenium at High Ionic Strength under Anoxic Conditions," J. Nucl. Sci. Tech., 47(5), pp. 431-438 (2010).   DOI
22 I. McKinley and D. Savage, "Comparison of Solubility Databases Used for HLW Performance Assessment," J. Contam. Hydrol., 21, pp. 335-350 (1996).   DOI   ScienceOn
23 F. Seby, M. Potin-Gautier, E. Giffaut, G. Borge and O. F. X. Donard, "A Critical Review of Thermodynamic Data for Selenium Species at 25${^{\circ}C}$," Chem. Geol., 171, pp. 173 -194 (2001).   DOI
24 L. Duro, M. Grivé, E. Cera, C. Domènech and J. Bruno, "Update of a Thermodynamic Database for Radionuclides to Assist Solubility Limits Calculation for Performance Assessment," SKB-TR-06-17, Stockholm, Sweden (2006).
25 P. D. Canniere, A. Maes, S. Williams, C. Bruggeman, T. Beauwens, N. Maes and M. Cowper, "Behavior of Selenium in Boom Clay," External Report, SCK.CEN-ER-120, Mol, Belgium (2010).
26 Y. Fujikawa and M. Fukui, "Radionuclide Sorption to Rocks and Minerals: Effects of pH and Inorganic Anions. Part 2. Sorption and Speciation of Selenium," Radiochim. Acta, 76, pp. 163-172 (1997).
27 R. L. de Loyo, S. I. Nikitenko, A. C. Scheinost and M. Simonoff, "Immobilization of Selenite on $Fe_{3}O_{4}$ and Fe/$Fe_{3}C$ Ultrasmall Particles," Environ. Sci. Technol., 42, pp. 2451-2456 (2008).   DOI
28 A. M. Scheidegger, D. Grolimund, D. Cui, J. Devoy, K. Spahiu, P. Wersin, I. Bonhoure and M. Janousch, "Reduction of Selenite on Iron Surfaces: a Micro-Spectroscopic Study," Phys. IV, 104, pp. 417-420 (2003).
29 A. C. Scheinost and L. Charlet, "Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products," Environ. Sci. Technol., 42, pp. 1984-1989 (2008).   DOI
30 C. Bruggeman, A. Maes, J. Vancluysen and P. Vandemussele, "Selenite Reduction in Boom clay: Effect of $FeS_{2}$, Clay Minerals and Dissolved Organic Matter," Environ. Pollut., 137, pp. 209-221 (2005).   DOI
31 K. Daub, X. Zhang, J. J. Noel and J. C. Wren, "Gamma-Radiation-Induced Corrosion of Carbon Steel in Neutral and Mildly Basic Water at 150${^{\circ}C}$," Corros. Sci., 53, pp. 11-16 (2011).   DOI
32 E. Breynaert, C. Bruggeman and A. Maes, "XANES-EXAFS Analysis of Se Solid-Phase Reaction Products Formed upon Contacting Se(IV) with FeS2 and FeS," Environ. Sci. Technol., 42, pp. 3595-3601 (2008).   DOI