• 제목/요약/키워드: iron powder

검색결과 482건 처리시간 0.033초

An Investigation on the Effects of Powder Warming, Inner Lubrication, and Die Wall Lubrication on the Die Wall Lubricated Warm Compation of Iron Powder

  • Ozaki, Yukiko;Alessandri, Elena;Uenosono, Satoshi;Takamiya, Tsuguyuki;Shigeru, Takano
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.750-751
    • /
    • 2006
  • We investigated the mechanism how the high green density can be provided during die lubricated warm compaction (WD). We observed and analyzed the densification processes of iron powders including different contents of an inner lubricant, and measured the lateral pressure at the die wall during WD in comparison with conventional compaction and warm compaction. As a result, the high density in WD was due to not only the particles-deformation enhanced by warming powders but also the particles-rearrangement promoted by reducing an amount of the inner lubricant rather than the die lubrication.

  • PDF

철계 연자성 분말용 하이브리드 절연 코팅막 개발 (Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder)

  • 김정준;김선겸;김영균;장태석;김휘준;김용진;최현주
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

주철과 Fe-Mn-Al강 이종금속 용접부의 조직변화에 관한 연구 (A study on the microstructure change during the welding of a cast iron with a Fe-Mn-Al steel powder)

  • 김경중;서정현
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.35-45
    • /
    • 1990
  • Casting are widely used nodays as complicated and diversified forming materials due to its superior castability. However the welding of cast iron has not been accompaniced satisfactory resulting in an microstructure change happened in the heat affected zone (HAZ), especially the graphite are formed and shaped consecutively in the area and it has great impact on the crack occuring and growth together with martensite forming in this area. It case of gray cast iron welding, it is required for pre-heat treatment or specific welding consumables to restrain forming the martensite in the HAZ. In this study, by applying the plasma surface overlaid welding. Fe-Mn-Al steel powder has been used for improvement of anti-crackability in the HAZ and much attention has been paid to establish the overlaid welding method for gray cast iron so that optimum welding conditions may prevent the cracking. With our experiments, we have found that to prevent defects which may occur in the HAZ, the overlaid welding technique for gray cast iron has been developed.

  • PDF

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.

유기금속 전구체로부터 초미립 $Fe_2O_3$ 분말의 저온 합성 (Low-Temperature Preparation of Ultrafine Fe2O3 Powder from Organometallic Precursors)

  • 김정수;김익범;강한철;홍양기
    • 한국세라믹학회지
    • /
    • 제29권12호
    • /
    • pp.942-948
    • /
    • 1992
  • Ultrafine iron oxide powder, {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3, were prepared by the thermal decomposition of organometallic compounds. The formation process of powder includes the thermal decomposition and oxidation of the organometallic precursors, Fe(N2H3COO)2(N2H4)2 (A) and N2H5Fe(N2H3COO)3.H2O (B). The organometallic precursors, A and B, were synthesized by the reaction of ferrous ion with hydrazinocarboxylic acid, and characterized by quantitative analysis and infrared spectroscopy. The mechanistic study for the thermal decomposition was performed by DAT-TG. The iron oxide powder was obtained by the heat treatment of the precursors at 20$0^{\circ}C$ and $600^{\circ}C$ for half an hour in air. The phases of the resulting product were proved {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3 respectively. The particle shape was equiaxial and the particle size was less than 0.1 ${\mu}{\textrm}{m}$. Magnetic properties of the {{{{ gamma }}-Fe2O3 powder obtained from A and B was 234 Oe of coercivity, 64.26 emu/g of saturation magnetization, 23.59 emu/g of remanent magnetization and 24.1 Oe, 47.27 emu/g, 3.118 emu/g respectively. The value of $\alpha$-Fe2O3 powder was 1.494 Oe, 0.4862 emu/g, 0.1832 emu/g and 1,276 Oe, 0.4854 emu/g, 0.1856 emu/g respectively.

  • PDF

MoO3 침출공정 폐액으로부터 치환반응 시스템을 이용한 구리 분말 회수에 대한 연구 (Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System)

  • 김건홍;홍현선;정항철
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.405-411
    • /
    • 2012
  • Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.