Browse > Article
http://dx.doi.org/10.4150/KPMI.2012.19.6.405

Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System  

Kim, Geon-Hong (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Hong, Hyun-Seon (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Jung, Hang-Chul (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
Publication Information
Journal of Powder Materials / v.19, no.6, 2012 , pp. 405-411 More about this Journal
Abstract
Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.
Keywords
Recovery; $MoO_3$ leaching solution; Copper powder; Cementation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. B. Larry, F. J. JR. Joseph and L. W. Barron: Process chemistry for water and wastewater treatment, Prentice- Hall, Inc., Englewood Cliffs, New Jersey, (1982) 307.
2 K. Risto, L. Jukka, P. Leena, G. Thomas and L. Heikki: Hydrometallurgy, 56 (2000) 93.   DOI   ScienceOn
3 C. S. Brooks: Met. Finish. 88 (1990) 21.
4 K. Juttner, U. Gallar and H. Schmieder: Electrochmica Acta, 45 (2000) 2575.   DOI   ScienceOn
5 A. G. Chmielewski, T. S. Urbanski and W. Migdal: Hydrometallurgy, 45 (1997) 333.   DOI   ScienceOn
6 M. C. Ruiz and R. Padilla: Hydrometallurgy, 48 (1998) 313.   DOI   ScienceOn
7 S. D. Ridder and F. S. Biancaniello: Mat. Sci. Eng., 98 (1988) 17.
8 Y. Yamamichi, T. Kudo, M. Nakayama and M. Orii: J. Jpn. Soc. of Powder and Powder Metallurgy, 21 (1975) 227.   DOI
9 S. Takaki and T. Daido: Jpn. Kokai Tokkyo Koko, 14 (1989) 1.
10 T. Agelidis, K. Fytianos and G. Vasilikiotis: Chemosphere 14 (1985) 1001.   DOI   ScienceOn
11 M. G. Pavlovic, Lj. J. Pavlovic, I. D. Doroslovacki and N. D. Nikolic: Hydrometallurgy, 73 (2004) 155.   DOI   ScienceOn
12 H. S. Hong, H. C. Jung, G. H. Kim and M. S. Kong: J. Kor. Powder Metallurgy Institute, 16 (2009) 351.   DOI   ScienceOn
13 H. S. Hong, M. S. Kong, J. K. Ghu, J. K. Lee and H. G. Suk: J. Mater. Sci. Technol., 24 (2008) 141.
14 L. Makhloufi, B. Saidani and H. Hammache: Wat. Res. Pergamon, 34(9) (2000) 2517.   DOI   ScienceOn
15 A. Dib and L. Makhloufi: Chemical Engineering and Processing, 43 (2004) 1265.   DOI   ScienceOn
16 E. C. Lee, F. Lawson and K. N. Han: Hydrometallurgy, 3 (1978) 7.   DOI   ScienceOn
17 B. Zhao, Z. Liu, Z. Zhang and L. Hu: J. Solid State Chem., 130 (1997) 157.   DOI   ScienceOn
18 Q. Hua, D. Shang, W. Zhang, K. Chen, S. Chang, Y. Ma, Z. Jiang, J. Yang and W. Huang: Langmuir, 27(2) (2011) 655.