• Title/Summary/Keyword: iron oxide-iron system

Search Result 94, Processing Time 0.029 seconds

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process (NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량)

  • 고재천;류병환
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • The pick up impurity was studied for preparing the NiCuZn ferrite powder by a ball milling method that usually uses in the industrial ceramic process. The raw materials of NiO, CuO, ZnO, and $Fe_2O_3$ powder were weighted according to various spinel composition and mixed for 18 hrs by a wet ball milling method after that the slurry was followed by spray dried and calcined at $700^{\circ}C$ 3 hrs. The calcined NCZF powder was finally ball milled during 65 hrs as same method. The stainless steel ball and jar are used as mixing and milling equipment and the solid concentration of the slurry was 25 vol%. The impurities, stainless steel pickup, were effected by the composition of raw materials especially iron oxide, nickel oxide in the mixing process and by the rate of calcine of NiCuZn ferrite in final milling process. The empirical equation of stainless steel pickup was driven in the wet ball milling system. Finally, the composition of NiCuZn ferrite could be controlled by the empirical equation.

  • PDF

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal (광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거)

  • 추광호;박경원;김문현
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2004
  • This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.

Focal Lesion Detection of SPIO-specific agent Compared with Optimized Pulse Sequences in the Hepatic Metastases: Case Review (간 전이환자에서 최적의 펄스시퀀스에 따른 SPIO 특이성 조영제의 국소병변검출: Case review)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • To compare the accuracy of breath-hold magnetic resonance imaging sequences to establish the most effective superparamagnetic iron oxide-enhanced sequence for detection of hepatic metastases. A total of 100 patients(50men and 50women, mean age: 60years) with liver disease(including malignant and benign liver lesions) were investigated at 3.0T machine (GE, General Electric Medical System, Excite HD) with 8Ch body coil. Pulse sequence for MR imaging decided to the FS-T2-FSE-RT(TR/TE/Thick./Freq./Phase=12857ms/100ms/7mm/512/384), MGRE(TR/TE/Thick./Freq./Phase=100ms/9.7ms/7mm/384/288), in-out of phase echo(TR/$TE_1$, $TE_2$/Thick./Freq./Phase=140ms/2.4, 5.8ms/7mm/352/300), Images obtained before the injection of SPIO. Six sequences were optimized for lesion detection: FS-T2-FSE-RT, multigradient recalled echo data image(MGRE), T2-weighted MGRE with an 9.7msec echo time. Images were reviewed independently by five blinded observers. The accuracy of each sequence was measured by using picture archiving communication system analysis. All results were correlated with findings at multidectator computed tomography examination. Differences between the mean results of the six observers were measured by using paired student t-test analysis. Postcontrast T2-weighted MGRE sequences were the most accurate and were significantly superior to postcontrast FS-T2-FSE-RT, T2-weighted MGRE, in-out of phase MR sequences(p < .05). For all lesions that were malignant or smaller than 1 cm, respectively, contrast to noise ratio of pre and postcontrast sequences were -1and -0.3 for T2-weighted FSE, 0.53 and 4.5 in-out of phase, 7, 7.08, 5.08, 3.32, 1.7, 1.16, 0.79, 0.68 for GRE with 2.9, 7.5, 12.1, 16.6, 21.2, 25.8, 30.4, 35.0 TE values. Breath-hold various TE precontrast sequences offer improvement in sensitivity compared with fixed multigradient recalled echo sequences alone.

  • PDF

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Comparison of the Kinetic Behaviors of Fe2O3 Spherical Submicron Clusters and Fe2O3 Fine Powder Catalysts for CO Oxidation

  • Yoo, Seung-Gyun;Kim, Jin-Hoon;Kim, Un-Ho;Jung, Jin-Seung;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1379-1384
    • /
    • 2014
  • ${\alpha}-Fe_2O_3$ spherical particles having an average diameter of ca. 420 nm and ${\alpha}-Fe_2O_3$ fine particles (< 10 ${\mu}m$ particle size) were prepared to examine as catalysts for CO oxidation. Kinetic studies on the catalytic reactions were performed in a flow reactor using an on-line gas chromatography system operated at 1 atm. The apparent activation energies and the partial orders with respect to CO and $O_2$ were determined from the rates of CO disappearance in the reaction stage showing a constant catalytic activity. In the temperature range of $150-275^{\circ}C$, the apparent activation energies were calculated to be 13.7 kcal/mol on the ${\alpha}-Fe_2O_3$ spherical submicron clusters and 15.0 kcal/mol on the ${\alpha}-Fe_2O_3$ fine powder. The Pco and $Po_2$ dependencies of rate were investigated at various partial pressures of CO and $O_2$ at $250^{\circ}C$. Zero-order kinetics were observed for $O_2$ on both the catalysts, but the reaction order for CO was observed as first-order on the ${\alpha}-Fe_2O_3$ fine powder and 0.75-order on the ${\alpha}-Fe_2O_3$ spherical submicron clusters. The catalytic processes including the inhibition process by $CO_2$ on the ${\alpha}-Fe_2O_3$ spherical submicron powder are discussed according to the kinetic results. The catalysts were characterized using XRD (X-ray powder diffraction), FE-SEM (field emission-scanning electron microscopy), HR-TEM (high resolution-transmission electron microscopy), and $N_2$ sorption measurements.