Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal

광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거

  • 추광호 (경북대학교 환경공학과) ;
  • 박경원 (경북대학교 환경공학) ;
  • 김문현 (대구대학교 건설환경공학부)
  • Published : 2004.06.01

Abstract

This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.

본 연구에서는 광촉매 반응과 막분리 기술을 접목시킨 혼성 고도 정수처리 공정에서 소독 부산물의 전구체로 알려진 자연산 유기물을 효과적으로 제거하고자 하였고 다양한 운전 조건에서 시스템의 성능을 비교 평가하였다. 자연산 유기물은 흡입여과 방식의 분리막과 TiO$_2$ 광촉매를 이용하여 광분해하였을 때 광촉매 투입량의 증가에 따라 반응속도가 증가하였지만 과량의 촉매 주입시에는 반응 속도 향상에 오히려 부정적으로 작용하였다. 자연산 유기물을 보다 효과적으로 제거하기 위해 산화철 주입, TiO$_2$ 표면처리, 분리막 표면코팅을 시도하여 제거특성 및 운전에 따른 막여과 특성을 평가하였다. 산화철 주입은 초기에 흡착작용으로 인해 제거율 증가를 보였으나 반응이 진행됨에 따라 산화철 입자에 의한 광산란으로 광분해 효율이 오히려 감소되었다. 산화철 입자에 의한 광산란을 제어하고자 TiO$_2$ 표면을 광처리와 열처리 방법을 이용해 철을 직접 부착시킨 경우 긍정적인 효과를 얻지 못했다. 그러나 산화철로 막표면을 코팅하여 광산란 효과를 배제시킨 경우에는 향상된 결과를 보였다 막투과 플럭스 15 L/$m^2$-h에서 정밀여과를 수행하였을 때 TiO$_2$나 산화철에 의한 막오염은 거의 일어나지 않았고 안정된 막투과도를 나타내었다.

Keywords

References

  1. Appl. Catal. B v.26 Effect of Ionic Strength and Hydrogen Peroxide on the Photocatalytic Degradation of 4-Chlorobenzoic Acids in Water D.D.Dionysiou;M.T.Suidan;E.Bekou;I.Baudin:J.M.Laine https://doi.org/10.1016/S0926-3373(00)00124-7
  2. Wat. Res. v.33 Separation of Titanium Dioxide Photocatalyst in Its Aqueous Suspensions by Coagulation with Basic Aluminum Chloride S.Kagaya;K.Shimizu;R.Arai;K.Hasegawa https://doi.org/10.1016/S0043-1354(99)00004-4
  3. Wat. Res. v.33 Role of Humic Acids in the TiO₂-Photocatalyzed degradation of Tetrachloroethene in Water E.Selli;D.Baglio;L.Montanarella;G.Bidoglio https://doi.org/10.1016/S0043-1354(98)00368-6
  4. J. Photochem. Photobiol. A v.87 Photocatalytic Degradation of Organic Contaminants in Water with TiO2 Supported on Polythene Films K.Tennakone;C.T.K.Tilakaratne;I.R.M.Kottegoda https://doi.org/10.1016/1010-6030(94)03980-9
  5. Wat. Qual. Int. Prospects for a Supported Photocatalyst in the Detoxification of Drinking Water D.Robert;A.Gauthier
  6. Catal. Today v.55 Study on a Photocatalytic Membrane Reactor for water Purification R.Molinari;M.Mungari;E.Drioli;A.D.Paola;V.Loddo;L.Palmisano;M.Schiavello https://doi.org/10.1016/S0920-5861(99)00227-8
  7. Wat. Res. v.31 The Influence of Solution Matrix on the Photocatalytic Degradation of TNT in TiO₂Slurries D.C.Schmelling;K.A.Gray;P.V.Kamat https://doi.org/10.1016/S0043-1354(96)00358-2
  8. J. Catal. v.82 Photoassisted Heterogeneous Catalysis: the degradation of Trichloroethylene in Water A.L.Pruden;D.H.Ollis https://doi.org/10.1016/0021-9517(83)90207-5
  9. J. Catal. v.88 Heterogeneous Photoassisted Catalysis: Conversions of Perchloroethylene, Dichloroethane, Chloroacetic Acids and Chlorobenzenes D.F.Ollis;C.Hsiao;L.Budiman;C.Lee https://doi.org/10.1016/0021-9517(84)90053-8
  10. J. Dispersion Sci. Technol. v.20 The Role of Humic Substances in the Photocatalytic Degradation of Water Contaminants C.Minero;E.Pelizzetti;M.Sega;S.E.Friberg;J.Sjoblom https://doi.org/10.1080/01932699908943812
  11. Appl. Catal. B v.20 Photoinduced Decomposition of Nitrate in Drinking Water in the Presence of Titania and Humic Acids B.Bems;F.C.Jentoft;R.Schlogl https://doi.org/10.1016/S0926-3373(98)00105-2
  12. Ind. Eng. Chem. Res. v.40 Use of Uitrafiltration Membrane for the Separation of TiO₂Photocatalysts in Drinking Water Treatment S.A.Lee;K.H.Choo;C.H.Lee;H.I.Lee;T.Hyeon;W.Choi;H.H.Kwon https://doi.org/10.1021/ie000738p
  13. Wat. Res. v.31 Photocatalytic Treatment of Humic Substances in Drinking Water B.R.Eggins;F.L.Palmer;J.A.Byrne https://doi.org/10.1016/S0043-1354(96)00341-7
  14. J. Appl. Electrochem. v.29 An Integrated Flow Reactor-Mem-brane Filtration System for Heterogeneous Photocatalysis Part Ⅰ: Experiments and Modeling of a Batch-Recirculated Photoreactor K.Sopajaree;S.A.Qasim;S.Basak;K.Rajeshwar https://doi.org/10.1023/A:1026418208733
  15. J. Appl. Electrochem. v.29 An Integrated Flow Reactor-Membrane Filtration System for Heterogeneous Photocatalyst Part Ⅱ: Experiments on the Ultrafiltration Unit and Combined Operation K.Sopajaree;S.A.Qasim;S.Basak;K.Rajeshwar https://doi.org/10.1023/A:1003633309224
  16. Desalination v.154 Removal of Residual Organic Matter form Secondary Effluent by Iron Oxides Adsorption K.H.Choo;S.K.Kang https://doi.org/10.1016/S0011-9164(03)80014-0
  17. Environ Sci. Technol v.37 Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-sensitized Metal/TiO₂under Visible Light E.Y.Bae;W.Y.Choi https://doi.org/10.1021/es025617q
  18. Appl. Catal. B v.1270 Adsorptive and Potocatalytic Performance of TiO₂Pillared Montmorillonite in Degradation of Endocrine Disruptors having Different Hydrophobicity C.Ooka;H.Yoshida;M.Horio;K.Suzuki;T.Hattori
  19. 공업화학 전망 v.4 no.6 나노 광촉매의 제조와 전망 이태규;김종순;최원용
  20. Appl. Catal. B v.36 Maleic Acid Photocatalytic Degradation Using Fe-TiO₂ Catalysts Dependence of the Degradation Mechanism J.Arana;O.Gonzalez Diaz;M.Miranda Saracho;J.M.Dana Rodriguez https://doi.org/10.1016/S0926-3373(01)00284-3
  21. Kor. Membr. J. v.2 no.1 Cleaner Production Options in a Food (Kimchi) Industry K.H.Choo;C.H.Lee
  22. Membr. J. v.13 no.3 Rotating Reverse Osmosis Membrane Filtration S.H.Lee;R.M.Lueptow