• Title/Summary/Keyword: ion-trap

Search Result 121, Processing Time 0.022 seconds

Analytical Method of Epichlorohydrin in Canned Beverages by Purge-and- Trap/GC

  • Lee Kwang-Ho;Kwak In-Shin;Kim Dyoung-Il;Choi Byoung-Hee;Kim Guy-Joung;Lee Chul-Won
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2001.10a
    • /
    • pp.140-140
    • /
    • 2001
  • A sensitive analytical method based on gas chromatograpy-mass spectrometry with a selected ion monitoring (GC/MS-SIM) with the purge-and-trap concentration and with headspace method (in limited applications) was developed for determining of epichlorohydrin in canned beverages coated with epoxy resin. The calibration curve in the range of $0.5\sim50ng$ had correlation coefficient greater than 0.998 and a detection limit of $0.l\mug/L$ was obtained using a sample volume of 20ml. The predominant ions of epichlorohydrin produced in MSD using electron ionization(EI) were m/z 57 ([M-CI]+) and 62/64 $([M-CH_2O]+)$. In survey of epichlorohydrin in thirty commercial canned beverage samples, none of them was detected.

  • PDF

A Study on the Memory Trap Analysis and Programming Characteristics of Reoxidized Nitrided Oxide (재산화 질화산화막의 기억트랩 분석과 프로그래밍 특성)

  • 남동우;안호명;한태현;서광열;이상은
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.17-20
    • /
    • 2001
  • Nonvolatile semiconductor memory devices with reoxidized nitrided oxide(RONO) gate dielectric were fabricated, and nitrogen distribution and bonding species which contributing memory characteristics were analyzed. Also, memory characteristics of devices according to anneal temperatures were investigated. The devices were fabricated by 0.35$\mu\textrm{m}$ retrograde twin well CMOS processes. The processes could be simple by in-situ process of nitridation anneal and reoxidation. The nitrogen distribution and bonding state of gate dielectric were investigated by Dynamic Secondary Ion Mass Spectrometry(D-SIMS), Time-of-Flight Secondary ton Mass Spectrometry(ToF-SIMS), and X-ray Photoelectron Spectroscopy(XPS). Nitrogen concentrations are proportional to nitridation anneal temperatures and the more time was required to form the same reoxidized layer thickness. ToF-SIMS results show that SiON species are detected at the initial oxide interface and Si$_2$NO species near the new Si-SiO$_2$ interface that formed after reoxidation. As the anneal temperatures increased, the device showed worse retention and degradation properties. These could be said that nitrogen concentration near initial interface is limited to a certain quantity, so excess nitrogen are redistributed near the Si-SiO$_2$ interface and contributed to electron trap generation.

  • PDF

Deep Level Trap Analysis of 4H-SiC PiN and SBD Diode (4H-SiC PiN과 SBD 다이오드 Deep Level Trap 비교 분석)

  • Shin, Myeong-Cheol;Byun, Dong-Wook;Lee, Geon-Hee;Shin, Hoon-Kyu;Lee, Nam-Suk;Kim, Seong Jun;Koo, Sang-Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.123-126
    • /
    • 2022
  • We investigated deep levels in n-type 4H-SiC epitaxy layer of the Positive-Intrinsic-Negative diode and Schottky barrier diodes by using deep level transient spectroscopy. Despite the excellent performance of 4H-SiC, research on various deep level defects still requires a lot of research to improve device performance. In Positive-Intrinsic-Negative diode, two defects of 196K and 628K are observed more than Schottky barrier diode. This is related to the action of impurity atoms infiltrating or occupying the 4H-SiC lattice in the ion implantation process. The I-V characteristics of the Positive-Intrinsic-Negative diode shows about ~100 times lower the leakage current level than Schottky barrier diode due to the grid structures in Positive-Intrinsic-Negative. As a result of comparing the capacitance of devices diode and Schottky barrier diode devices, it can be seen that the capacitance value lowered if it exists the P implantation regions from C-V characteristics.

Fragmentation Behavior Studies of Chalcones Employing Direct Analysis in Real Time (DART)

  • Motiur Rahman, A.F.M.;Attwa, Mohamed W.;Ahmad, Pervez;Baseeruddin, Mohammad;Kadi, Adnan A.
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.30-33
    • /
    • 2013
  • Chalcones are naturally occurring, biologically active molecules generating interest from a wide range of research applications including synthetic methodology development, biological activity investigation and studying fragmentation patterns. In this article, a series of chalcones has been synthesized and their fragmentation behavior was studied using modern ambient ionization technique Direct Analysis in Real Time (DART). DART ion source connected with an ion trap mass spectrometer was used for the fragmentation of various substituted chalcones. The chalcones were introduced to the DART source using a glass capillary without sample preparation step. All the chalcones showed prominent molecular ion peaks $[M]^{{\cdot}+}$ corresponding to the structures. Multistage mass spectral data $MS^n$ ($MS^2$ and $MS^3$) were collected for all the chalcones studied. The chalcones with substitutions at 3, 4 or 5 positions gave product ion peaks with the loss of a phenyl radical ($Ph^{\cdot}$) by radical initiated ${\alpha}$-cleavage, while substitution at 2 position of chalcone in the A-ring gave a product ion peak with the loss of substituted styryl radical (PhCH = $CH^{\cdot}$). In case of the chalcones with the substituent at 4 positions in A and B rings gave both types of fragmentation patterns. In conclusion, chalcones can be easily characterized using modern DART interface in very short time and efficiently without any cumbersome sample pretreatment.

Electronic Spectroscopy of Protonated Tyr-Ala Dipeptide Ions (Tyr-Ala 펩타이드 이온의 전자전이 분광 연구)

  • Choi, Chang-Min;Kwon, Jang-Sook;Kim, Hwan-Jin;Yoon, Tae-Oh;Yang, Min-O;Kim, Nam-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.318-323
    • /
    • 2007
  • Electronic photofragmentation spectrum of protonated tyrosine-alanine dipeptide ions(YAH+) was obtained in the wavenumber region of 34500~36700 cm-1 using a quadrupole ion trap time-of-flight mass spectrometer (QIT-TOFMS). YAH+ ions were produced by electrospray ionization, stored in the ion trap and then irradiated by ultraviolet laser pulses which induced photofragmentation of the ions. The electronic photofragmentation spectrum was obtained by monitoring the photodissociation yields of YAH+ ions as a function of the laser wavelength. The spectrum exhibited two broad peaks which were assigned as S1 and S2 by theoretical calculations using a time-dependent density functional method. The broad widths of the peaks in the spectrum were explained by the overlaps of the peaks originated from various conformers of YAH+ ions which were present in the gas phase at room temperature and also by the contributions of the hot bands.

DYE SENSITIZED SOLAR CELLS WITH HIGH PHOTO-ENERGY CONVERSION -CONTROLL OF NANO-PARTICLE SURFACES-

  • Hayase, Shuzi
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.52-56
    • /
    • 2006
  • Some of factors affecting photo-conversion efficiency of dye sensitized solar cells (DSCs) are discussed in terms of $TiO_2$ electrodes. The first topic is on the surface modification of $TiO_2$ nano-particles, which is associated with electron traps on the surface of $TiO_2$ nano-particles. The surface is modified with dye molecules under pressurized $CO_2$ atmosphere to increase the surface coverage of $TiO_2$ nano-particles with dye molecules. This increases Jsc because of an increase in the amount of dye molecules and a decrease in the amount of trapping sites on $TiO_2$ nano-particles. In addition, the decrease in the amount of trap sites increases Voc because decreases in Voc are brought about by the recombination of $I_2$ molecules with electrons trapped on the $TiO_2$ surfaces. Selective staining for tandem cells is proposed. The second topic is on the contact between a $SnO_2$/F transparent conductive layer (TCL) and nano-particles. Polishing the TCL surfaces with silica nano-particles increases the contact, resulting in Jsc increases. The third topic is the fabrication of ion-paths in $TiO_2$ layers. Electro-spray coating of $TiO_2$ nano-particles onto TCL is shown to be effective for fabricating ion-paths in $TiO_2$ layers, which increases Jsc.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

A Study of in vitro Scavenging Reactions of Acrylamide with Glutathione Using Electrospray Ionization Tandem Mass Spectrometry

  • Cui, Sheng-Yun;Kim, Seung-Jin;Jo, Sung-Chan;Lee, Yong-Moon;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1235-1240
    • /
    • 2005
  • A combination of electrospray ionization and tandem mass spectrometry was used to characterize the scavenging reactions of acrylamide (AA) in the presence of glutathione (GSH) in vitro. In the presence of GSH, AA was deactivated effectively and scavenged by reactions consuming small amount of GSH. Reaction products and structural information were identified using collision-induced dissociation (CID) in an ion trap mass spectrometer. In the mixture of GSH and AA, significant increase in abundance of fragment ion peak was observed at m/z 233, which was identified as $[Cys-Glu]^+$, formed by the elimination of glycine moiety of GSH. GSH also contributes to the AA scavenging reaction by conjugating with AA through the sulfhydryl group in cysteine moiety. The probable scavenging reaction pathway of AA in the presence of GSH has been proposed based on the CID experimental data.

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.

Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows

  • Yang, Yong-xin;Cao, Sui-zhong;Zhang, Yong;Zhao, Xing-xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.885-892
    • /
    • 2009
  • To investigate host defense mechanisms for protecting the mammary gland from mastitis infection, the membrane fraction of mammary tissues from Holstein cows was purified by differential velocity centrifugation, and then the sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-PAGE) separated proteins were identified by ion trap mass spectrometer equipped with a Surveyor high performance liquid chromatography (HPLC) system. A total of 183 proteins were identified. Bioinformatics software was applied to analyse physicochemical characteristics of the identified proteins and to predict biochemical function. These data may provide valuable information to investigate the mechanisms of mammary gland milk secretion and infectious disease, and enable a clear identification of proteins and potential protein targets for therapies.