• Title/Summary/Keyword: ion-mobility

Search Result 230, Processing Time 0.027 seconds

Nano Patterning of Highly Ordered Pyrolysis Graphite by Ion Beam Sputtering

  • Yun, Seon-Mi;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.385-385
    • /
    • 2011
  • Ion beam Sputtering (IBS)를 이용한 물질 표면의 pattern 형성은 물리적 변수 조절로 손쉽게 nano structure의 크기와 형태를 조절할 수 있어 관심을 받고 있다. 본 연구발표에서는 massless Dirac Fermion behavior로 인한 highly carrier mobility와 같은 특성으로 인해 차세대 device material로 각광받고 있는 Graphene의 layered compound (층상구조) 형태인 HOPG (Highly Ordered Pyrolysis Graphite)에 IBS (Ion beam Sputtering)를 이용해 nano structure가 형성 가능함을 보이고 그 특징에 대해 소개하려 한다. HOPG(0001)를 Sputter 했을 때, 표면에 잘 정렬된 nano ripple pattern이 형성 가능함을 확인하였으며 sputter하는 시간을 변화하면 약 10 nm에서 80 nm까지 wavelength를 조절할 수 있다. 또한 이전의 IBS를 이용한 연구들에서 확인할 수 있는 다른 물질의 곧게 뻗은 nano ripple과는 다르게 ripple의 끝에 nano swab이 생기는 것을 AFM (Atomic Force Microscope)으로 확인할 수 있었다. 이러한 Graphite에서만 나타나는 Sputter에 의한 표면의 변화의 원인을 규명하고자 Sputter가 지속됨에 따라 나타나는 mopology의 roughness와 wavelength의 시간에 따른 dynamic scaling behavior를 확인하였고 그 얼개를 알기 위해 simulation을 수행 하였다.

  • PDF

Non Stationary Ionic Current through Polymer Charged Membrane

  • Jeong, Sung-Hyun;Lee, Won-Chul;Yang, Wong-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.937-942
    • /
    • 2003
  • The relaxation phenomena of ionic currents through the charged membrane under the constant applied potentials has been studied. The formulation was obtained for the non stationary current by assuming that the ion mobility is independent of concentration and the potential gradient is a constant within membrane, and it was applied to the experimental results with the sulfonated polystyrene collodion base membrane. It has been shown that the initial ion distributions in the membrane play a predominant role in the relaxation phenomena.

Study on the Electrodyalisis Using Ion Exchange Membrane (이온交換樹脂膜을 利用한 電氣透析의 檢討)

  • Chin Taik Lee
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 1974
  • The relation between the concentration of concentrated solution, the quantity of electromigrated solute/electricity and the increasing volume of concentrated solution/the quantity of electromigrated ion to the concentration of solution and the applied current density in the electrodyalisis using ion exchange membranes are studied. It is found that the experimental results on the above mentioned quantities can be understood by the ionic concentration in the membrane phase, the mobility of electrolytes and the flux of electro-osmosis.

  • PDF

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

Electrical characteristics of Field Effect Thin Film Transistors with p-channels of CdTe/CdHgTe Core-Shell Nanocrystals (CdTe/CdHgTe 코어쉘 나노입자를 이용한 P채널 전계효과박막트렌지스터의 전기적특성)

  • Kim, Dong-Won;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1341-1342
    • /
    • 2006
  • Electrical characteristics of field-effect thin film transistors (TFTs) with p-channels of CdTe/CdHgTe core-shell nanocrystals are investigated in this paper. For the fabrication of bottom- and top-gate TFTs, CdTe/CrHgTe nanocrystals synthesized by colloidal method are first dispersed on oxidized p+ Si substrates by spin-coating, the dispersed nanoparticles are sintered at $150^{\circ}C$ to form the channels for the TFTs, and $Al_{2}O_{3}$ layers are deposited on the channels. A representative bottom-gate field-effect TFT with a bottom-gate $SiO_2$ layer exhibits a mobility of $0.21cm^2$/ Vs and an Ion/Ioff ratio of $1.5{\times}10^2$ and a representative top-gate field-effect TFT with a top-gate $Al_{2}O_{3}$ layer provides a field-effect mobility of $0.026cm^2$/ Vs and an Ion/Ioff ratio of $2.5{\times}10^2$. $Al_{2}O_{3}$ was deposited for passivation of CdTe/CdHgTe core-shell nanocrystal layer, resulting in enhanced hole mobility, Ior/Ioff ratio by 0.25, $3{\times}10^3$, respectively. The CdTe/CdHgTe nanocrystal-based TFTs with bottom- and top gate geometries are compared in this paper.

  • PDF

A study for omega-shaped gate ZnO nanowire FET (Omega 형태의 게이트를 갖는 ZnO 나노선 FET에 대한 연구)

  • Keem, Ki-Hyun;Kang, Jeong-Min;Yoon, Chang-Joon;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1297-1298
    • /
    • 2006
  • Omega-shaped-gate (OSG) nanowire-based field effect transistors (FETs) have been attracted recently attention due to their highdevice performance expected from theoretical simulations among nanowire-based FETs with other gate geometries. OSG FETs with the channels of ZnO nanowires were successfully fabricated in this study with photolithographic processes. In the OSG FETs fabricated on oxidized Si substrates, the channels of ZnO nanowires with diameters of about 60 nm are coated surroundingly by $Al_{2}O_{3}$ as gate dielectrics with atomic layer deposition. About 80 % of the surfaces of the nanowires coated with $Al_{2}O_{3}$ is covered with gate metal to form OSG FETs. A representative OSG FET fabricated in this study exhibits a mobility of 98.9 $cm^{2}/Vs$, a peak transconductance of 0.4 ${\mu}S$, and an Ion/Ioff ratio of $10^6$ the value of the Ion/Ioff ratio obtained from this OSG FET is the highest among nanowire-based FETs, to our knowledge. Its mobility, peak transconductance, and Ion/Ioff ratio arc remarkably enhanced by 11.5, 32, and $10^6$ times, respectively, compared with a back-gate FET with the same ZnO nanowire channel as utilized in the OSG FET.

  • PDF

Preparation and Characterization of Polypyrrole Electroactive Actuators (Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성)

  • 박정태;최혁렬;김훈모;전재욱;남재도
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.826-832
    • /
    • 2001
  • In this study, PPy/gold/mylar type electroactive bi-layer actuator was prepared by the electrochemical polymerization of pyrrole onto the gold/mylar film and the actuation characteristics were studied using bending beam method. Conducting polymer-based actuators undergo volumetric changes due to the movement of dopant ions into the film during the electrical oxidation process. The bilayer films exhibited different actuation characteristics depending on dopant ion size. It was observed that the relatively small dopant ion (i.e. toluene sulfonate) moved into the PPy film at oxidized state, so volume expanded to result in bending motion. In case of the film having large dopant ion (i.e. dodecylbenzenesulfonate), volume expansion was observed at reduced state. This is due to the incorporation of $Na^+$ counterion with water molecules, while the large dopant ion was fixed in the film due to the limited mobility during tile redox process.

  • PDF

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

A UPnP A/V Multimedia System using Prediction of Mobility for Mobile User (이동하는 사용자를 위한 이동성 예측을 이용하는 UPnP A/V 멀티미디어 시스템)

  • Kim, Kyung-Deok;Jung, E-Gun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1509-1520
    • /
    • 2009
  • Contrary to ubiquitous environments, indoor computing environments like home network doesn't support user mobility. This paper suggests UPnP A/V multimedia system using prediction of mobility for adaption of seamless multimedia service. The multimedia system enables indoor mobile users to play multimedia contents by transferring the current session to an adjacent device automatically. The system represents users' contextual information by Five Ws and One H model, and predicts user's movements by using contextual information and transitions of locations. The prediction basically includes multiple locations so that it improves accuracy of prediction. We evaluated the suggested system using in accuracy of prediction, time for prediction, handover time for service, and the system showed that adapt ion of seamless multimedia service was enabled by using prediction of mobility on mobile user.

  • PDF

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.