Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.10.2925

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential  

Lee, Song Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.
Keywords
$OH^-$ ion mobility; Supercritical water; Molecular dynamics simulation; SPC/E water model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zimmerman, G. H.; Gruszkiewicz, M. S.; Wood, R. H. J. Phys. Chem. 1995, 99, 11612.   DOI   ScienceOn
2 Ho, P. C.; Palmer, D. A. J. Solution Chem. 1996, 25, 711.   DOI
3 Lee, S. H.; Cummings, P. T.; Simonson, J. M.; Mesmer, R. E. Chem. Phys. Lett. 1998, 293, 289.   DOI   ScienceOn
4 Lee, S. H.; Cummings, P. T. J. Chem. Phys. 2000, 112, 864.   DOI   ScienceOn
5 Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.   DOI
6 Stillinger, F. H.; Weber, T. A. Mol. Phys. 1982, 46, 1325.   DOI   ScienceOn
7 English, C. A.; Venables, J. A. Proc. R. Soc. Lond. A 1974, 340, 57.   DOI
8 Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Liquids and Gases; McGraw-Hill: New York, 1977.
9 Guissani, Y.; Guillot, B. J. Chem. Phys. 1993, 98, 8221.   DOI   ScienceOn
10 Lee, S. H.; Rasaiah, J. C. J. Chem. Phys. 2011, 135, 124505.   DOI   ScienceOn
11 Hoover, W. G.; Ladd, A. J. C.; Moran, B. Phys. Rev. Lett. 1982, 48, 1818.   DOI
12 Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016.   DOI
13 Evans, D. J. J. Chem. Phys. 1983, 78, 3297.   DOI
14 Evans, D. J. Mol. Phys. 1977, 34, 317.   DOI   ScienceOn
15 Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327.   DOI   ScienceOn
16 Gear, W. C. Numerical Initial Value Problems in Ordinary Differential Equations; McGraw-Hill: New York, 1965.
17 Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87, 5071.   DOI
18 Lee, S. H.; Rasaiah, J. C. J. Chem. Phys. 1994, 101, 6964.   DOI   ScienceOn
19 Ojamäe, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547.   DOI   ScienceOn