• Title/Summary/Keyword: ion transport number

Search Result 38, Processing Time 0.028 seconds

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

Fixed Site Carrier Membrane for selective metal ion transport, supported by PET fabric (PET 직물을 매트릭스로 이용한 Fixed Site Carrier Membrane의 금속이온 투과성)

  • Kim, Yong-Yl;Soukil Mah
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.219-222
    • /
    • 2001
  • Membranes which selectively transport specific metals on an industrial scale is much useful in a number of applications, such as aqueous stream purification, catalyst and recycling of the reactants, the applications in metal ion sensing and so forth. Numerous studies have been already made to use liquid, supported liquid and, emulsion liquid membranes (LM) for selective carriers for metal ion transport. (omitted)

  • PDF

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu;Yunsheng Zhang;Jinyang Jiang;Rusheng Qian;Tongning Cao;Yuncheng Wang;Guowen Sun
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.485-499
    • /
    • 2023
  • Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.

Preparation and Properties of Sulfonated Polyvinylchloride (PVC) Membrane for Capacitive Deionization Electrode by Ultra Sonication Modification (초음파 표면개질에 의한 CDI 전극용 술폰화 염화비닐(PVC) 멤브레인의 제조 및 특성)

  • Hwang, Chi Won;Oh, Chang Min;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Ion exchange membrane is widely used in various fields such as electro dialysis, diffusion dialysis, redox flow battery, fuel cell. PVC cation exchange membrane using ultrasonic modification was prepared by sulfonation reaction in various sulfonation times. Sulfuric acid was used as a sulfonating agent with ultrasonic condition. We've characterized basic structure of sulfonated PVC cation exchange membrane by FT-IR, EDX, water uptake, ion exchange capacity (IEC), electrical resistance (ER), conductivity, ion transport number and surface morphology (SEM). The presence of sulfonic groups in the sulfonated PVC cation exchange membrane was confirmed by FT-IR. The maximum values of water uptake, IEC, electrical resistance and ion transport number were 40.2%, 0.87 meq/g, $35.2{\Omega}{\cdot}cm^2$ and 0.88, respectively.

Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis (역전기투석 장치 내 스페이서의 영향에 관한 수치해석적 연구)

  • Shin, Dong-Woo;Kim, Hong-Keun;Kim, Tae-Hwan;Park, Jong-Soo;Jeon, Dong Hyup
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the effects of spacer and variation of spacer height in reverse electrodialysis (RED) on the seawater and ion transport were investigated. A three-dimensional computational fluid dynamics (CFD) simulation for a hexagonal spacer was constructed. The results showed that the swirl in the channel and ion transport rate to the membrane were enhanced at higher Reynolds number, on the other hand, pressure difference between the inlet and outlet was increased. Moreover thicker spacer increased Power number and Sherwood number.

Lithium ion Transport Characteristics of Gel-Type Polymer Electrolytes Containing Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (리튬 p-[메톡시 올리고(에틸렌옥시)]벤젠설폰산염으로 제조된 젤형 고분자 전해질의 리튬 이온 운반 특성)

  • 허윤정;강영구;한규승;이창진
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.385-391
    • /
    • 2003
  • Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (LiEOnBS) with different repeating unit of ethylene oxide were synthesized and were used for preparing gel-polymer electrolytes. The conductivities and lithium ion transference number were measured as a function of Li-salt concentration and repeating unit of ethylene oxide of the LiEOnBS. The maximum conductivity of the resulting gel-polymer electrolyte was found to be 4.89${\times}$10$\^$-4/ S/cm (LiEO7.3BS, 0.5 M) at 30$^{\circ}C$. The lithium ion transference number (t$\sub$Li$\sub$+//) measurement were performed by means of the combination do polarization and ac impedance methods in gel-polymer electrolytes. Lithium ion transference number was measured to be in the range of 0.75∼0.92 for the LiEOnBS containing gel-polymer electrolytes. The maximum t$\sub$Li$\sub$+// was obtained to be 0.92 for the 0.1 M LiEOnBS containing polymer electrolytes. The synthesized LiEOnBS showed single ion transport like characteristics when n was large than 3.

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF

Preparation and Characterization of Heterogeneous Anion Exchange Membrane for Recovery of Sulfate Ion from Waste Water (폐수 중 황산이온 회수를 위한 불균질 음이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Choi, Jae-Hwan;Hwang, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.247-254
    • /
    • 2007
  • Heterogeneous anion exchange membranes were prepared by compression molding for the recovery of sulfate ion from waste water. The swelling ratio, transport number, and ion exchange capacity of the heterogeneous anion exchange membranes were increased and their electrical resistances were decreased as the amount of ion exchange resin content in the matrix was raised. The tensile strength of the heterogeneous anion exchange membrane was decreased with increasing the amount of ion exchange resin in the LLDPE. The tensile strength for the LDPE heterogeneous membrane containing 30 wt% anion exchange resin showed the highest value. The water content increased with increasing amount of ion exchange resin in the membrane. Moreover the highest transport number of the membrane was 0.86. The electrical resistance of LDPE matrix membrane with 50 wt% resin showed $46.5{\Omega}{\cdot}cm^2$. Current efficiency of electrodialysis for sulfate ion showed the highest value at the current density of $125 mA/cm^2$ in 0.5 mol/L sulfuric acids solution.

Preparation and Properties of PE Heterogeneous ion Exchange Membrane with Bead and Fibrous ion Exchanger (비드와 섬유이온교환체 고정 PE 불균질 이온교환막의 제조 및 특성)

  • 황택성;박명규;강경석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.575-581
    • /
    • 2002
  • Heterogeneous ion exchange membranes were prepared by mixing polyethylene as matrix with bead and fibrous anionic ion exchangers at different mixing ratio. Generally, ion exchange capacities were increased with increasing the ratio of the fibrous ion exchanger content. The highest ion exchange capacity of the membrane was 1.86 meq/g at 30wt% IXF (ion exchange fiber) in the membrane. The water uptake, fixed ion concentration, and ion transport number of the membrane increased with increasing the content of the fibrous ion exchanger. However, the electrical resistivity of the membrane was decreased with increasing the content of the fibrous ion exchanger. The lowest electrical resistivity of 5$\Omega$/$\textrm{cm}^2$ was observed at 30 wt%of IXF.

Preparation of Heterogeneous Ion Exchange Membranes and Evaluation of Desalination Performance in Capacitive Deionization (불균질 이온교환막의 제조와 축전식 탈염에서의 탈염 성능 평가)

  • Choi, Jae-Hwan;Lee, Joo-Bong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2016
  • We prepared heterogeneous ion exchange membranes (hetero-IEMs) for the application of membrane capacitive deionization (MCDI). Hetero-IEMs were fabricated by compressing the mixture of ion exchange resin powders and liner low density polyethylene (LLDPE). Characterization and MCDI desalination experiments were carried for the fabricated membranes. Electrical resistance of membrane decreased and water content increased with increasing the resin content in the hetero-IEMs. However, transport number indicating permselectivity of membrane was similar with that of commercial homogenesous ion exchange membrane. The results of MCDI desalination experiments showed that the adsorption amount for hetero-IEM was about 90% of that of homogeneous membrane due to the high electrical resistance of hetero-IEM. Although desalination performance of hetero-IEM decreased compared with homogeneous membrane, it was thought to be applicable to MCDI because of simple preparation and low price.