Browse > Article

Preparation and Characterization of Heterogeneous Anion Exchange Membrane for Recovery of Sulfate Ion from Waste Water  

Choi, Kuk-Jong (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University)
Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University)
Rhee, Young-Woo (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University)
Hwang, Taek-Sung (Department of Chemical and Biological Engineering, College of Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.31, no.3, 2007 , pp. 247-254 More about this Journal
Abstract
Heterogeneous anion exchange membranes were prepared by compression molding for the recovery of sulfate ion from waste water. The swelling ratio, transport number, and ion exchange capacity of the heterogeneous anion exchange membranes were increased and their electrical resistances were decreased as the amount of ion exchange resin content in the matrix was raised. The tensile strength of the heterogeneous anion exchange membrane was decreased with increasing the amount of ion exchange resin in the LLDPE. The tensile strength for the LDPE heterogeneous membrane containing 30 wt% anion exchange resin showed the highest value. The water content increased with increasing amount of ion exchange resin in the membrane. Moreover the highest transport number of the membrane was 0.86. The electrical resistance of LDPE matrix membrane with 50 wt% resin showed $46.5{\Omega}{\cdot}cm^2$. Current efficiency of electrodialysis for sulfate ion showed the highest value at the current density of $125 mA/cm^2$ in 0.5 mol/L sulfuric acids solution.
Keywords
heterogeneous ion-exchange membrane; electrodialysis; extrusion; LLDPE; LDPE; ion transport number;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 K. H. Chung, M. W. Sunwoo, H. S. Woo, and S. B. Baik, Korean J. Biotechnol. Bioeng., 5, 183 (1990)
2 Gunther E. Molau, J. Membrane Sci., 8, 309 (1981)
3 T. Sugo and K. Saito, Membrane, 71, 58 (1990)
4 J. Okamoto, T. Sugo, A Katakai, and H. Omichi, J. Appl. Polym. Sci., 30, 2967 (1985)   DOI   ScienceOn
5 M. S. Kang, 'Water-splitting phenomena and applications in ino-rexchange membranes', Ph.D Thesis, GIST, Gwangju (2002)
6 H. Stranthmann, J. J. Krol, H. J. Rapp, and G. Eigenberger, J. Membrane Sci., 125, 123 (1997)
7 S. Sherry, Fibrinolysis, thrombosis, and Hemostasis, Philadelphia, London, p.31 (1992)
8 J. R. B. Williams, Brit. J. Exp. Pathol., 32, 530 (1951)
9 A. D. Fletcher, N. Alkjaersig, S. Sherry, E. Centon, J. Hirsh, and F. Bachmann, J. Lab. Clin. Med., 64, 713 (1965)
10 W. E. Holmes, D. Pennica, M. Blaber, M. W. Rey, W. A. Guenzler, G. J. Stettens, and H. L. Heyneker, Biol. Technol., 3, 923 (1985)
11 M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht (1996)
12 O. K. Albrechtsen, Acta Physiol. Scand., 39, 284 (1957)
13 U. S. Hwang and J. H. Choi, Korean Society of Environmental Engineers, 27, 36 (2005)
14 G. H. Barlow and L. Lazer, Thromb. Res., 1, 201 (1973)
15 Giuffrida, PCT Int. Appl WO 94. 06, 850 (1994)
16 P. G. Zaworski and G. S. Gill, Anal Biochem., 173, 440 (1988)
17 G. Pourcelly and C. Gavach, 'Electrodialysis water splitting-Applications of eletrodialysis with bipolar membranes (EDBM),' Handbook on bipolar membrane technology, A J. B. Kemperman, Editor, Twente Univ. Press, Netherlands (2000)
18 H. R. Lijnen and D. Collen, Tromb. Haemost., 66, 88 (1991)
19 J. H. Choi, 'Transport phenomena in ion-exchange membrane under- and over-limiting current regions', Ph.D Thesis, GIST, Gwangju (2002)
20 O. K. Albrechtsen, Brit. J. Haematol., 3, 284 (1957)
21 T. C. Wun, L. Ossowski, and E. Reich, J. Biol. Chem., 257, 7262 (1982)
22 E. A. Hegazy, N. B. El-Asy, A.y M. Dessouki, and M. M. Shaker, Radiat. Phys. Chem., 33, 13 (1989)