• Title/Summary/Keyword: ion milling

Search Result 187, Processing Time 0.03 seconds

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

A study on the fabrication and processing of ultra-precision diamond tools using FIB milling (FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구)

  • Wi, Eun-Chan;Jung, Sung-Taek;Kim, Hyun-Jeong;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Joo-Hyung;Baek, Seung-Yup
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

Fabrication of metal nano-wires using carbon nanotube masks

  • Yun, W.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.175-175
    • /
    • 1999
  • Circumventing problems lying in the conventional lithographic techniques, we devised a new method for the fabrication of nanometer scale metal wires inspired by the unique characteristics of carbon nanotubes (CNTs). Since carbon nanotubes could act as masks when CNT-coated thin Au/Ti layer on a SiO2 surface was physically etched by low energy argon ion bombardment 9ion milling), Au/Ti nano-wires were successfully formed just below the CNTs exactly duplicating their lateral shapes. Cross-sectional analysis by transmission electron microscopy revealed that the edge of the metal wire was very sharply developed indicating the great difference in the milling rates between the CNTs and the metal layer as well as the good directionality of the ion milling. We could easily find a few nanometer-wide Au/Ti wires among the wires of various width. After the formation of nano-wires, the CNTs could be pushed away from the metal nano-wire by atomic force microscopy, The lateral force for the removal of the CNTs are dependent upon the width and shape of the wires. Resistance of the metal nano-wires without the CNTs was also measured through the micro-contacts definted by electron beam lithography. since this CNT-based lithographic technique is, in principle, applicable to any kinds of materials, it can be very useful in exploring the fields of nano-science and technology, especially when it is combines with the CNT manipulation techniques.

  • PDF

Electrochemical Properties of SnCo for Anode Material of Li Ion Batteries (리튬 이온 전지 음극 재료용 SnCo의 전기화학적 특성)

  • Kim, Ki-Tae;Kim, Yong-Mook;Lee, Yong-Ju;Lee, Ki-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2002
  • SnCo alloy powder prepared by high energy ball milling is examined as an anode material for lithium-ion batteries. As the ball-milling time increased, the crystallinity of SnCo decreased. XRD and TEM SADP showed that nanocrystalline and amorphous phase coexisted after 16 h ball-milling. As the crystallinity decreased, the cycleability increased. At first cycle, there are 4 plateau potentials. The observation of voltage plateau at about 0.68 V confirms the formation of Sn-Li alloy and Co metal. It is considered that The plateau potentials below 0.68 V were reaction between Li and Sn. The change of chemical diffusion coefficient showed that the structure of SnCo alloy abruptly changed at first cycle, and maintained after 2nd cycle.

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Measurement of the Residual Stress in the Steel Wires by using Focused Ion Beam and Digital Image Correlation Method (집속 이온빔과 디지털 화상 관련법을 이용한 고 탄소 미세 강선의 잔류 응력 측정)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.323-328
    • /
    • 2007
  • The residual stress in axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam(FIB) milling and digital image correlation(DIC) program. The residual stress is calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement is obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot is introduced by FIB milling with low energy beam. The experimental procedures are described and the feasibilities are demonstrated in steel wires fabricated with different conditions. It reveals that the tensile residual stress is formed in all steel wires and this is strongly influenced by the fabrication conditions.