• Title/Summary/Keyword: ion loss

Search Result 385, Processing Time 0.028 seconds

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

Internal Mixing of Pollutants for Submicron Particles Observed during Springtime in Japan

  • Matsumoto, Jun;Narukawa, Masahiro;Takahashi, Kenshi;Matsumi, Yutaka;Yabushita, Akihiro;Shimizu, Atsushi;Matsui, Ichiro;Sugimoto, Nobuo
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.27-41
    • /
    • 2009
  • Internally mixed states of submicron particles during transport from the Asian continent to the Pacific Ocean were analyzed using a single-particle time-offlight mass spectrometer. The observation was conducted at Tsukuba in Japan in the spring of 2005 in order to investigate springtime transport of particles from the continent. The sum of ion intensities of sulfate (${HSO_4}^-$) detected in particles originating from the continental air masses counted for 75% of that in all particles during the observation. By analyzing correlations among compounds, origins and internally mixed states of compounds were estimated. It was found that nitrate was mixed with sulfate-rich particles as the air mass approached Japan. It was confirmed that Asian mineral dust particles played significant roles for transport of continental sulfate to Japan. As a result of analysis on internal mixing of chlorine and nitrate, it was implied that the chlorine loss in fine sea salt particles had already proceeded at Tsukuba. It was characteristic that fluoride ions were significantly detected, coal combustion in the Asian Continent can be an important source of fluorides detected in Japan through the westward transportation of fine particles including fluorides.

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches (질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석)

  • Hwang, Cheol-hwan;Park, Han-Gyu;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis

  • Guan, Liying;Huang, Fang;Li, Zhushi;Han, Bingshe;Jiang, Qian;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.745-750
    • /
    • 2008
  • Selenium, an essential trace element possessing anti-carcinogenic properties, can induce apoptosis in cancer cells. We have previously shown that sodium selenite can induce apoptosis by activating the mitochondrial apoptosis pathway in NB4 cells. However, the detailed mechanism remains unclear. Presently, we demonstrate that p53 contributes to apoptosis by directing signaling at the mitochondria. Immunofluorescent and Western blot procedures revealed selenite-induced p53 translocation to mitochondria. Inhibition of p53 blocked accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, suggesting that mitochondrial p53 acts as an upstream signal of ROS and activates the mitochondrial apoptosis pathway. Selenite also disrupted cellular calcium ion homeostasis in a ROS-dependent manner and increased mitochondrial calcium ion concentration. p38 kinase mediated phosphorylation and mitochondrial translocation of p53. Taken together, these results indicate that p53 involves selenite-induced NB4 cell apoptosis by translocation to mitochondria and activation mitochondrial apoptosis pathway in a transcription-independent manner.

Assessment of geothermal potential in an area of sulfate-rich hot springs, Bugok, southern Korea

  • Park Seong-Sook;Yun Seong-Taek;Chae Gi-Tak;So Chil-Sup;Koh Yong-Kwon;Choi Hyeon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.303-306
    • /
    • 2006
  • Using a variety of chemical geothermometers we estimate the temperature of a deep geothermal reservoir in relation to thermal groundwater in the Bugok area, southern Korea, in order to assess the potential use of geothermal energy in South Korea. Thermal water at Bugok has been exploited down to about 400 m below the land surface and shows the highest outflow temperatures (up to $78{\circ}C$) in South Korea. Based on the hydrochemical data and occurrence, groundwater in Bugok can be classified into three groups: $Na-SO_4$ type thermal groundwater (CTGW) occurring in the central part (about 0.24 $km^2$) $Ca-HCO_3$ type cold groundwater (SCGW) occurring in shallow peripheral parts of CTGW; and the intermediate type groundwater (STGW). CTGW waters are typical of thermal water in the area, because they have the highest outflow temperatures and contain very high concentrations of Na, K and $SiO_2$ due to the sufficient reaction with silicate minerals in deep reservoir. Their enriched $SO_4$ was likely formed by gypsum dissolution. The major ion composition of CTGW shows the general approach to a partial equilibrium state with rocks at depth. The application of various alkali ion geothermometers yields temperature estimates in the range of 88 to $198{\circ}C$ for the thermal reservoir. Multiple mineral equilibrium calculation indicates asimilar but narrower temperature range between about 100 and $155{\circ}C$. These temperature estimates are not significantly higher than the measured outflow temperatures for CTGW Considering the heat loss during the ascent- of thermal waters, this fact may suggest that a thermal reservoir in the study area is likely located at relatively shallow depths (possibly close to the depth of preexisting wells). Therefore, we suggest a high potential for geothermal energy development around the Bugok area in southern Korea.

  • PDF

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

A STUDY ON THE SOLUBILITY OF DENTAL RESTORATIVE MATERIALS (치과용 수복재의 용해성에 관한 분석연구)

  • Na, Keung-Kyun;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.87-105
    • /
    • 1991
  • The purpose of this experiment was to measure the leaking and solubility of commonly used dental restorative materials - Silux plus (CS), Hi-pol (CH), Clearfil F-II, Fissureseal (FS), Glass-Ionomer cement Fuji Type II (GI), Amalgam Cavex 68 (AM), Zinc Phosphate Cement (ZP) and gutta-percha (GP) and investigate the relation between the solubility and marginal leakage. Disc-shape specimens were fabricated with each material and dipped into deionized water, 0.01M lactic acid and 0.005M KOH solution, thus the total ionic concentrations in each solution was measured with ion chromatograph after 1, 3, and 7 days, respectively. For the solubility test, each specimen was immersed in 0.001M and 0.01M lactic acid for 24 hours, respectively and total weight loss was calculated. Also, Zn leaking through the margin of restorations was measured. The obtained results were as follows: 1. The amounts of eluted ion from the eight materials were most in 0.01M lactic acid and least in deionized water. 2. Of the eight materials, the fluoride release was greatest for glass ionomer cement (GI) in 0.01 M lactic acid after 7 days. 3. In analysis of the divalent cation, Mg was eluted most for zinc phosphate cement (ZP) and Ca for Clearfil F-II (CF) in 0.01M lactic acid after 7 days. 4. In analysis of transition metals, Cu and Zn were detected only. 5. The solubility rate of eight materials was greater in 0.01M lactic acid than in 0.001M for 24 hours, for zinc phosphate cement (ZP) the rate was greatest (5.4%) in 0.001M lactic acid, and amalgam least (0.01%). 6. The Zn concentration of restorative material with Z.P.C base was greater in 0.01M lactic acid than in 0.001M lactic acid.

  • PDF

Polymerization of ADP-Ribose Pyrophosphatase: Conversion Mechanism of $Mg^{2+}-Dependent$ ADP-Ribose Pyrophosphatase into $Mg^{2+}-Independent$ Form

  • Kim, Dae-Ki;Kim, Jong-Hyun;Song, Eun-Kyung;Han, Myung-Kwan;Kim, Jong-Suk
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.826-831
    • /
    • 2003
  • ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose (ADPR) into AMP and ribose-5'-phosphate. It is classified into two groups, $Mg^{2+}$-dependent and $Mg^{2+}$-independent ADPRase, depending on its $Mg^{2+}$requirement. Here, we purified $Mg^{2+}$-dependent ADPRase from rabbit liver and examined what factors affect $Mg^{2+}$ requirement. The purified enzyme showed a single band with the molecular weight of 34 kDa on SDS-PAGE both in the presence and absence of 2-mercaptoethanol. The molecular weight of the native enzyme calculated by gel filtration was 68 kDa, indicating that ADPRase is a dimer made up of two identical subunits. $Mg^{2+}$-dependent ADPRase with the highest ADPR affinity had a $K_m$ of 160$\pm$10 $\mu$M and a pH optimum of around pH 9.5. Treatment of the purified ADPRase with heated cytosol fractions at 37$^{\circ}C$ for 3 h caused some changes in the chemical properties of the enzyme, including an increase in molecular weight, a decrease in solubility, and a loss of $Mg^{2+}$-dependency. The molecular weight of the cytosol-treated ADPRase measured by gel filtration was over 420 kDa, suggesting, for the first time, that ADPRase could be polymerized by undefined cytoplasmic factors, and that polymerization is accompanied by changes in the solubility and metal ion dependency of the enzyme.

A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC (높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구)

  • Hwang, Won-Tae;Kim, Gli-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.