• Title/Summary/Keyword: ion implantation

Search Result 506, Processing Time 0.036 seconds

Electrical Conductivity Properties of the Vacuum Forming Packing Materials by Ion Implantation (이온주입에 의한 진공성형 포장재의 전기전도 특성)

  • 이재형;이찬영;길재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1055-1061
    • /
    • 2003
  • A study has been made of surface modification of various organic materials by ion implantation to increase the surface electrical properties. The substrate used were PP(polypropylene), PET(polyethylene teraphthalate), ECOP(ethylene copolyester), PS(polystyrene). N$_2$, Ar ion implantation was performed at energies of 40 and 50keV with fluences from 5${\times}$ 10$\^$15/ to 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$ with and without H$_2$O gas environment. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species, atmosphere of chamber and kind of polymer. In result, surface conductivity of polymers irradiated with atmosphere gas H$_2$O was 10 times more higher than normal vacuum atmosphere, but after 90 hours, surface conductivity returned to the without H$_2$O gas atmosphere condition caused by aging effect. After vacuum forming, surface resistance value was changed to over 10$\^$16/$\Omega$/$\square$, because creation of surface cracks.

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

A Study of Three Dimensional Ion Implantation Simulator (3차원 이온 주입 시뮬레이터 개발에 관한 연구)

  • 송재복;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.93-96
    • /
    • 1996
  • We developed three dimensional Monte carlo ion implantation simulator which simulate distributions of impurities under the ion implantation on the tilted multi-layered layer. Our simulation reveals three dimensional shadow effect and sidewall scattering effect due to the geometrical shapes. For the evaluation of the developed three dimensional Monte carlo ion implantation simulator, calculations with 100,000 ions have been performed for the island and hole structures with a thin oxide of 100$\AA$ and nitride of 2000$\AA$. The simulation results showed that the distribution of ion decreases near the conner of the hole structure covered with a nitride layer and increases near the conner for the island structure open to oxide. Moreover, three dimensional distributions of ions were obtained with varying incident energy, tilt and rotation angle, mask depth and three-dimensional structure geometry.

  • PDF

Effect of the Droplets on the Wear Characteristics of Steel for the Cold Working Roller (Droplet가 냉연 롤러용 강의 마모 특성에 미치는 영향)

  • 문봉호
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • A modified surface layer by ion implantation is very thin (under 1 $\mu\textrm{m}$) but has superior mechanical characteristics. therefore ion implantation has been used successfully as a surface treatment technology to improve the wear, fatigue, and corrosion resistances of materials. MEVVA which is a kind of ion beam apparatus has merits of low cost and is usable to various metals, but occurs a droplet ranging from micron to tens of micron on the implanted surface at ion implantations. wear is a dynamic phenomenon on interacting surfaces with rotative motion. Since wear changes in condition of the surface, we should control to surface. In order to improve a wear resistance of Ti ion implanted 1C-3Cr steel(material for roller in the cold working process), it is essential to investigate the effect of the droplets on the wear characteristics. In this study, we investigate the effect of the droplets on the wear characteristics of 1C-3Cr steel using SEM Tribosystem as in-situ system. Results show that the droplet occurred at ion implantation becomes the cause of severe wear. Therefore, the ion-implanted surface should be removed the droplet to improve wear resistance.

Stress gradient relaxation and property modification of polysilicon films by ion implantation (이온 주입에 의한 다결정 실리콘의 응력 구배 완화 및 물성 개선)

  • Seok, Ji-Won;Gang, Tae-Jun;Lee, Sang-Jun;Lee, Jae-Hyeong;Lee, Jae-Sang;Han, Jun-Hui;Lee, Ho-Yeong;Kim, Yong-Hyeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.73-78
    • /
    • 2003
  • MEMS technology in the field of aerospace engineering is more important with light weight and high resolution. Therefore the investigation of thin films properties is issued and the residual stress of thin filrns is one of the important problems to solve. Ion implantation without thermal annealing is applied for the stress gradient relaxation of LPCVD polysilicon films used as the structural part in MEMS. He+ and Ar+ ion implantations reduce the stress gradient of polysilicon films. The property modification of polysilicon films by ion implantation is also investigated. The elastic modulus and hardness of polysilicon films with ion implantation is studied by CSM method which is an advanced nano-indentation method. Ion implantation decreases the elastic modulus and hardness of polysilicon films. However, they are improved with increasing ion dose.

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, jae S.;Kim, Hyung J.;Kim, W.;Choi, B.Y.;Tang, Guoy
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.151-151
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Z Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120 ke V to a total do range of 1xHP ions/cm2 to 8xlO17 ions/cm2 at various temperatures of 298"C to 676"C. The m microstructure changes by nitrogen implantation were analyzed by using TEM, XRD 뻐d A AES, cmd then wear behavior was evaluated by ball-on-disc wear testings at various loads a and sliding velocity under unlubricated condition. Nitrogen implantation produced ZrNx nitride above 4.37x1017 ions!cm2 as well as heavy d dislocations, which enhanced microhardness of the implanted surface of up to 900 Hk from 2 200 Hk of unimplanted substrate. Hardness was also found to be increased with increasing i implantation temperature and enhanced up to OOOHk at 620 "C. the wear resistance was g greatly improved with increasing total ion do않 as well as implantation temperature. The effective enhancement of wear resistance at high dose and tem야ratures is believed d due to significant hardening associated with high degree of precipitation of Zr nitrides and g generation of prismatic dislocation I$\infty$ps.infty$ps.

  • PDF

The Formation of Nitride and Enhancement of Mechanical Properties of Al Alloy by Nitrogen Implantation (Al합금에서 질소이온주입에 의한 질화물 형성과 기계적 특성 향상)

  • Jeong, Jae-Pil;Lee, Jae-Sang;Kim, Kye-Ryung;Choi, Byung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.235-239
    • /
    • 2006
  • The aluminum nitride(AlN) layer on Al7075 substrate has been formed through nitrogen ion implantation process. The implantation process was performed under the conditions : 100 keV energy, total ion dose up to $2{\times}10^{18}\;ions/cm^2$. XRD analysis showed that aluminum nitride layers were formed by nitrogen implantation. The formation of Aluminum nitride enhanced surface hardness up to 265HK(0.02 N) from 150HK(0.02 N) for the unimplanted specimen. Micro-Knoop hardness test showed that wear resistance was improved about 2 times for nitrogen implanted specimens above $5\;{\times}\;10^{17}\;ions/cm^2$. The friction coefficient was measured by Ball-on-disc type wear tester and was decreased to 1/3 with increasing total nitrogen ion dose up to $1\;{\times}\;10^{18}ions/cm^2$. The enhancement of mechanical properties was observed to be closely associated with AlN formation. AES analysis showed that the maximum concentration of nitrogen increased as ion dose increased until $5\;{\times}\;10^{17}\;ions/cm^2$.

Enhancement of Life Time for PCB (Printed Circuit Board) Drill Bit by Nitrogen Ion Implantation

  • Lee, Chan-Young;Lee, Jae-Sang;Kim, Bum-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.206-208
    • /
    • 2008
  • Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. In recent years, PCB drills tend to be more minimized increasingly as the electronics components have been more highly accumulated and minimized. Therefore nitrogen ion implantation was performed onto PCB drill (0.15 & 0.3 mm in diameter), in order to investigate mechanical properties of WC-Co cermets surface through Nano-indentation tests. PCB drill was implanted at energy of 70 keV, 90 keV, 120 keV and with the dose range of $1{\times}10^{17}$ and $5{\times}10^{17}\;ions/cm^{2}$. After ion implantation, WC-Co PCB drill bits was tested in actual operating situation to apply cutting tools industry and is concluded that the life time of nitrogen ion implanted PCB drills is one and a half times longer than the unimplanted.

Wear Properties of Biocompatible Ti Implant due to Nitrogen Ion Implantation (질소이온주입에 따른 생체안전성 티타늄 임플란트의 마모특성)

  • 최종운;손선희;변응선;정용수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.126-134
    • /
    • 1999
  • In this study, plasma source ion implantation was used to improve the wear properties of biocompatible titanium implant. In order to observe the effect of ion energy and dose on wear property of titanium implant, pin-on-disk type wear tests in Hank's solution were carried out. The friction coefficient of ion implanted specimens were increased from 0.47 to 0.65 under high energy and ion dose conditions. As increasing ion energy and ion dose, the amount of wear was reduced.

  • PDF