• 제목/요약/키워드: ion cluster

검색결과 132건 처리시간 0.031초

PROPERTIES OF THE CRYSTALLINE POLYIMIDE FILM DEPOSITED BY IONIZED CLUSTER BEAM

  • Whang, Chung-Nam
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.6-6
    • /
    • 1992
  • Ionized cluster beam deposition (ICBD) technique has been employed to fabricate high-purity crystalline polyimide (PI) film. The pyromellitic dianhydride (PMDA) and oxydianiline (ODA) were deposited using dual ICB sources, Fourier trans forminfraredspectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), and Transmission electron microscopy (TEM)study show that the bulk and surface chemical properties and the crystalline structure are very sensitive to the ICBD conditions such as cluster ion acceleration voltage and ionization voltage, At optimum ICBD conditions, the PI films have a maximum imidization, negligible impurities(∼1% isoimide), and a good crystalline structure probably due to the high surface migration energy and surface cleaning effect. These characteristics are superior to those of films deposited by other techniques such as colvent cast, vapowr deposition, or sputtering techniques.

  • PDF

화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정 (Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water)

  • 유근걸;정윤원;최인식;김형원;최병선
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Application of multivariate statistics towards the geochemical evaluation of fluoride enrichment in groundwater at Shilabati river bank, West Bengal, India

  • Ghosh, Arghya;Mondal, Sandip
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.279-288
    • /
    • 2019
  • To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.

이차이온 질량분석기를 이용한 탄탈 박막내의 불순물 분석 (Impurity analysis of Ta films using secondary ion mass spectrometry)

  • 임재원;배준우
    • 한국진공학회지
    • /
    • 제13권1호
    • /
    • pp.22-28
    • /
    • 2004
  • 본 논문은 탄탈 박막의 증착시 음의 기판 바이어스에 의한 탄탈 박막내의 불순물 농도변화에 대해서 고찰하였다. 탄탈 박막은 실리콘 기판 위에 이온빔 증착장비를 이용하여 기판 바이어스를 걸지 않은 경우와 -125 V의 기판 바이어스를 건 상태에서 증착하였다. 탄탈 박막내의 불순물 농도를 관찰하기 위해서 이차이온 질량분석기(secondary ion mass spectrometry)를 이용하였다. 세슘 클러스터 이온에 의한 깊이분석에서, -125 V의 기판 바이어스를 걸어줌으로써 산소, 탄소, 그리고 실리콘 불순물의 농도가 기판 바이어스를 걸지 않은 경우에 비해 상당히 감소한 것을 알 수 있었다. 또한, 세슘 이온빔과 산소 이온빔을 이용한 전체 불순물의 농도분포에서도, 음의 기판 바이어스가 박막 증착시 각각의 불순물 농도에 영향을 준다는 결과를 얻었고 이에 대한 고찰을 하였다.

투어멀린 처리수의 특성과 세균번식억제 및 살균 작용 (Properties on Tourmaline Treated-water and it's Disinfection, Suppression Effects of Bacteria Multiplication)

  • 소대화;박정철;이우식;장동훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.237-242
    • /
    • 2003
  • 투어멀린(Tourmaline)은 비대칭 쌍극자를 가진 유극성 결정체로 광물 중에서 영구적으로 전기분극 특성을 띄고 있는 유일한 물질로써, 일명 "전기석"이라고 알려져 있다. 자체의 미약 전류(약 0,06mA)와 함께 음이온 및 원적외선의 발생으로 최근 우리 주변에서 건강과 환경정화를 위한 관심 대상의 투어멀린은 육방정계의 압전성 및 초전성을 띄는 붕규산염으로, 물분자를 만나면 수소($H^+$)와 수산기($OH^-$)로 분해하여 친수기와 소수기를 구분하여 발생하며, $H^+$$OH^-$는 각각 $H_2O$와 결합하여 활성이 강한 hydronium ion($H_3O^+$)과 계면활성 작용이 있는 hydroxyl ion($H_3O_2^-$)을 생성한다. 물속에서 불안정한 상태로 존재하는 수산기는 hydroxyl (-)ion을 형성하여 약 알카리성($pH{\sim}7.4$)을 띄고, 물의 클러스터(cluster)를 세분화하는 수질개선 기능과 함께 살균, 항균 및 세균번식억제 효과를 갖는 것으로 확인되었다. 따라서 투어멀린 소결체를 활용하여 그 처리수의 특성조사 및 기능개발과 함께 대장균의 번식억제 작용 및 살균작용과 수질개선 기능 등 유용한 결과의 분석으로부터 다양한 응용성을 확보하였다.

  • PDF

아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선 (The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment)

  • 이승호;소명기
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Study of Weak Astrophysical Shock Waves using a PIC Code

  • 권혜원;류동수
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • Shock waves are ubiquitous in astrophysical environments. In particular, shocks formed by merger of subclumps, infall of matter and internal flow motion in intracluster media (ICMs) and cluster outskirts are relatively weak with Mach number M ${\lesssim}$ a few. At such weak shocks, it has been believed that the diffusive shock acceleration (DSA) of cosmic rays is rather inefficient. Yet, the presence of nonthermal phenomena, such as radio halos and relics, suggests that contrary to the expectation, DSA as well as magnetic field amplification should operate at weak shocks in cluster environments. We recently initiated a study of weak, collisionless, astrophysical shocks using a PIC(Particle-in-Cell) code. The PIC code describes the motion of electron and ion particles under the electromagnetic field which is represented in grid zones. Here, we present a preliminary work of one-dimensional simulations. We show how shocks are set up as the turbulent electromagnetic field is developed in the shock transition layer, and discuss the implication on DSA and magnetic field amplification.

  • PDF

Technical issue for growth of ZnO nano-structure by PLD

  • 김세윤;조광민;유재록;이준형;김정주;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.207-207
    • /
    • 2013
  • 증착온도 $700^{\circ}C$, 산소분압30mTorr에서 c-plane 사파이어 기판위에 PLD를 이용하여 ZnO nano-rod를 합성하였다. 거리가 멀어질수록 rod의 직경과 증착율이 감소하는 것을 확인 하였다. 이는 ablated particle이 가진 kinetic energy가 감소되고, cluster ion의 형성으로 인해 고온에서 rod가 형성될 수 있는 것으로 이해된다. 고진공에서는 kinetic energy가 감소되기 어렵기 때문에 nano-rod shape 형성은 불가능 할 것이며, ZnO와 같은 wurtzite 구조를 가진 물질의 타겟을 사용하여 cluster 형성 분위기에서 증착한다면 비슷한 경향을 나타낼 것으로 예상된다.

  • PDF

Sequential conversion from line defects to atomic clusters in monolayer WS2

  • Gyeong Hee Ryu;Ren-Jie Chan
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.27.1-27.6
    • /
    • 2020
  • Transition metal dichalcogenides (TMD), which is composed of a transition metal atom and chalcogen ion atoms, usually form vacancies based on the knock-on threshold of each atom. In particular, when electron beam is irradiated on a monolayer TMD such as MoS2 and WS2, S vacancies are formed preferentially, and they are aligned linearly to constitute line defects. And then, a hole is formed at the point where the successively formed line defects collide, and metal clusters are also formed at the edge of the hole. This study reports a process in which the line defects formed in a monolayer WS2 sheet expends into holes. Here, the process in which the W cluster, which always occurs at the edge of the formed hole, goes through a uniform intermediate phase is explained based on the line defects and the formation behavior of the hole. Further investigation confirms the atomic structure of the intermediate phase using annular dark field scanning transition electron microscopy (ADF-STEM) and image simulation.

Suppression of the Methyl Radical Loss from Acetone Cation within (CH3COCH3)n{CH3COCH3}+ Clusters

  • Lee, Yong-Hoon;Oh, Myoung-Kyu;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1519-1524
    • /
    • 2008
  • We have investigated the photophysics of the acetone radical cation in the vacuum ultraviolet energy region by multiphoton ionization combined with time-of-flight mass spectrometry in a cluster beam. We have found that the loss of methyl radical from the acetone radical cations is remarkably suppressed at 10.5 eV when they are solvated by a few neutral acetone molecules. The cluster ion mass spectra obtained by nanosecond and picosecond laser pulses reveal that there are intermolecular processes, occurring in several tens of picoseconds, which are responsible for the survival of the acetone cations in clusters. This remarkable solvation effect on the yield of the methyl radical loss from the acetone cation can be rationalized by the intracluster vibrational energy redistribution and the self-catalyzed enolization which compete with the methyl radical loss process.