Browse > Article
http://dx.doi.org/10.1186/s42649-020-00047-2

Sequential conversion from line defects to atomic clusters in monolayer WS2  

Gyeong Hee Ryu (School of Materials Science and Engineering, Gyeongsang National University)
Ren-Jie Chan (Department of Materials, University of Oxford)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 27.1-27.6 More about this Journal
Abstract
Transition metal dichalcogenides (TMD), which is composed of a transition metal atom and chalcogen ion atoms, usually form vacancies based on the knock-on threshold of each atom. In particular, when electron beam is irradiated on a monolayer TMD such as MoS2 and WS2, S vacancies are formed preferentially, and they are aligned linearly to constitute line defects. And then, a hole is formed at the point where the successively formed line defects collide, and metal clusters are also formed at the edge of the hole. This study reports a process in which the line defects formed in a monolayer WS2 sheet expends into holes. Here, the process in which the W cluster, which always occurs at the edge of the formed hole, goes through a uniform intermediate phase is explained based on the line defects and the formation behavior of the hole. Further investigation confirms the atomic structure of the intermediate phase using annular dark field scanning transition electron microscopy (ADF-STEM) and image simulation.
Keywords
Cluster; Line defect; Hole; ADF-STEM; $WS_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Barja, S. Wickenburg, Z. Liu, Y. Zhang, H. Ryu, M.M. Ugeda, Z. Hussain, Z.-X. Shen, S. Mo, E. Wong, M.B. Salmeron, F. Wang, M.F. Crommie, D.F. Ogletree, J. B. Neaton, A. Weber-Bargioni, Charge density wave order in 1D mirror twin boundaries of single layer MoSe2. Nat. Phys. 12, 751-756 (2016) https://doi.org/10.1038/nphys3730   DOI
2 Q. Chen, H. Li, S. Zhou, W. Xu, J. Chen, H. Sawada, C.S. Allen, A.I. Kirkland, J.C. Grossman, J.H. Warner, Ultralong 1D vacancy channels for rapid atomic migration during 2D void formation in monolayer MoS2. ACS Nano 12, 7721-2230 (2018) https://doi.org/10.1021/acsnano.8b01610   DOI
3 A.B. Farimani, K. Min, N.R. Aluru, DNA base detection using a single-layer MoS2. ACS Nano 8, 7914-7922 (2014) https://doi.org/10.1021/nn5029295   DOI
4 J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326-329 (2010) https://doi.org/10.1038/nnano.2010.53   DOI
5 X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu, H. Qiu, J.H. Hong, C.H. Jin, J.X. Li, X.R. Wang, L. T. Sun, W. Guo, Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013) https://doi.org/10.1038/ncomms2803   DOI
6 H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2002) https://doi.org/10.1103/PhysRevLett.109.035503   DOI
7 A. Nourbakhsh, A. Zubair, R.N. Sajjad, A. Tavakkoli, K. G, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, T. Palacios, MoS2 field effect transistors with sub-10nm channel length. Nano Lett. 16, 7798-7806 (2016) https://doi.org/10.1021/acs.nanolett.6b03999   DOI
8 G.H. Ryu, J. Lee, N.Y. Kim, Y. Lee, Y. Kim, M.J. Kim, C. Lee, Z. Lee, Line defect mediated formation of hole and Mo clusters in monolayer molybdenum disulfide. 2D Mater. 3, 014002 (2016) https://doi.org/10.1088/2053-1583/3/1/014002   DOI
9 R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th edn. (Butterworth-Heinemann, Oxford, 1999)
10 S. Wang, G.-D. Lee, S. Lee, E. Yoon, J.H. Warner, Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 10, 5419-5430 (2016) https://doi.org/10.1021/acsnano.6b01673   DOI
11 N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, A. Zettl, Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009) https://doi.org/10.1103/PhysRevB.80.155425   DOI
12 Y. Liu, X. Zou, B.I. Yakobson, Dislocations and grain boundaries in twodimensional boron nitride. ACS Nano 6, 7053-7058 (2012) https://doi.org/10.1021/nn302099q   DOI
13 H.J. Park, G.H. Ryu, Z. Lee, Hole defects on two-dimensional materials formed by electron beam irradiation: Toward nanopore devices. Appl. Microsc. 45, 107-114 (2015)
14 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147-150 (2011) https://doi.org/10.1038/nnano.2010.279   DOI
15 M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919-6921 (2009) https://doi.org/10.1039/B915190G   DOI
16 Y. Liu, J. Guo, Y.-C. Wu, E. Zhu, N.O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Pushing the performance limit of sub-100nm molybdenum disulfide transistors. Nano Lett. 16, 6337-6432 (2016) https://doi.org/10.1021/acs.nanolett.6b02713   DOI
17 N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, P. Hartel, B. Jiang, W. Gannett, A. Zettl, Vacancy growth and migration dynamics in atomically thin hexagonal boron nitride under electron beam irradiation. Phys. Status Solidi (RRL) 5, 295-297 (2011) https://doi.org/10.1002/pssr.201105262   DOI
18 A. Azizi, X. Zou, P. Ercius, Z. Zhang, A.L. Elias, N. Perea-Lopez, G. Stone, M. Terrones, B.I. Yakobson, N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014) https://doi.org/10.1038/ncomms5867   DOI
19 A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554-561 (2013) https://doi.org/10.1038/nmat3633   DOI
20 G.H. Ryu, H.J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H.S. Shin, C.W. Bielawski, R.S. Ruoff, S. Hong, Z. Lee, Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605 (2015) https://doi.org/10.1039/C5NR01473E   DOI
21 M. Topsakal, E. Akturk, H. Sevincli, S. Ciraci, First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 235435 (2008) https://doi.org/10.1103/PhysRevB.78.235435   DOI
22 C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M. F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: Stability and dynamics. Science 323, 1705-1708 (2009) https://doi.org/10.1126/science.1166999   DOI
23 A.R. Botello-Mendez, X. Declerck, M. Terrones, H. Terrones, J.-C. Charlier, Onedimensional extended lines of divacancy defects in graphene. Nanoscale 3, 2868-2872 (2011) https://doi.org/10.1039/C0NR00820F   DOI
24 A.N. Enyashin, M. Bar-sadan, L. Houben, G. Seifert, Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842-10848 (2013) https://doi.org/10.1021/jp403976d   DOI
25 R. Faccio, A.W. Mombru, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 24, 375304 (2012) https://doi.org/10.1088/0953-8984/24/37/375304   DOI
26 J. Kotakoski, C.H. Jin, O. Lehtinen, K. Suenaga, A.V. Krasheninnikov, Electron knockon damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404 (2010) https://doi.org/10.1103/PhysRevB.82.113404   DOI
27 X. Sang, X. Li, W. Zhao, J. Dong, C.M. Rouleau, D.B. Geohegan, F. Ding, K. Xiao, R. Unocic, In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 9, 2051 (2018) https://doi.org/10.1038/s41467-018-04435-x   DOI
28 Y. Han, J. Zhou, J. Dong, Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects. Appl. Surf. Sci. 346, 470-476 (2015) https://doi.org/10.1016/j.apsusc.2015.02.016   DOI
29 H.P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 035301 (2013) https://doi.org/10.1103/PhysRevB.88.035301   DOI
30 W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622 (2013) https://doi.org/10.1021/nl4007479   DOI
31 D. Le, T.B. Rawal, T.S. Rahman, Single-layer MoS2 with sulfur vacancies: Structure and catalytic application. J. Phys. Chem. C 118, 5346-5351 (2014) https://doi.org/10.1021/jp411256g   DOI
32 Y.-C. Lin, T. Bjorkman, H.-P. Komsa, P.-Y. Teng, C.-H. Yeh, F.-S. Huang, K.-H. Lin, J. Jadczak, Y.-S. Huang, P.-W. Chiu, A.V. Krasheninnikov, K. Suenaga, Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 6, 6736 (2015) https://doi.org/10.1038/ncomms7736   DOI