Browse > Article

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water  

Ryoo, Kun-kul (Department of Display Materials Engineering, Soonchunhyang University)
Jung, Youn-won (EW Tech)
Choi, In-sik (EW Tech)
Kim, Hyung-won (EW Tech)
Choi, Byung-sun (EW Tech)
Publication Information
Journal of the Semiconductor & Display Technology / v.20, no.2, 2021 , pp. 34-42 More about this Journal
Abstract
Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.
Keywords
Extreme ultraviolet (EUV); Mask cleaning; Amphoteric; Electrolyzed ion water; Wet cleaning; Nano particle; MoSi; Photoresist; Sn; Hydrocarbon deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamaguchi, Y., Nakaoka, S., Hayashi, T., Kawakami, M., Yano, D., "Molecular Dynamics Analysis on the Behavior of Water and Alcohol Liquids on a OH-Terminated SiO2 Surface", ECS trans. SCST16, vol. 92(2), pp. 87-94, (2019).
2 Tsuruta, L. R., Lessa, M. M., Carmona-Ribeiro, A. M., "Effect of Particle Size on Colloid Stability of Bilayer-covered Polystyrene Microspheres", J. Colloid and Interface Science, vol. 175(2), pp. 470-475, (1995).   DOI
3 Matheshwary, Patel, N., Sathyamurthy, N., Kulkarni, A. D., S. R. Gadre, S. R., "Structure and Stability of Water Clusters (H2O)n, n=8-20 : An Ab Initio Investigation", J. Phys. Chem. A, vol. 105, pp. 10525-10537, (2001).   DOI
4 Fan, Y., Yankulin L., Thomas, P., Mbanaso, C., Antohe, A., Garg, R., Wang, Y., Murray, T., Wuest, A., Goodwin, F., Huh, S., Cordes, A., Naulleau, P., Goldberg, K., Iacopo, M. I., Gullikson, E., Denbeaux, G., "Carbon Contamination Topography Analysis of EUV Masks", Proc. SPIE., Vol. 7636, pp.72713U1-9, (2010).
5 Ryoo, K., Jung, Y., Choi, I., Kim, H., Lee, J., Choi, B., "Wet Cleaning by using Amphoteric Electrolyzed Water for Mask Cleaning", ECS trans. SCST16, Vol. 92(2), pp. 209-215, (2019).   DOI
6 Pyrgiotakisa, G., McDevitta, J., Bordinia, A., Diaza, E., Molinaa, R., Watsona, C., Deloida, G., Lenardb, S., Fixb, N., Mizuyamaa, Y., Yamauchic, T., Braina, J., Demokritou, P., "A Chemical Free, Nanotechnology-based Method for Airborne Bacterial Inactivation using Engineered Water Nanostructures", Environ. Sci. Nano., vol. 2014(1), pp. 15-26, (2014).
7 Lynnette, B., Acids and Bases, New York: Crabtree Pub., (2009).
8 Li, L., Liu, X., Pal, S., Wang S., Ober, C. K., E. P., "Extreme Ultraviolet Resist Materials for Sub-7 nm Patterning", Chem. Soc. Rev., vol. 46, pp. 4855-4866, (2017).   DOI
9 Palazhchenko, O., "Pourbaix Diagrams at Elevated Temperatures ~A Study of Zn and Sn~", Thesis of Master Degree, University of Ontario Institute of Technology, (2012)
10 Ruzic, D., Lytle, W., Andruczyk, D., "EUV Mask Production and Cleaning", UIUC, 2011 Int. Workshop on EUV Lithography, EUV LITHO, Inc., P13, (2011).
11 Hansson, B. A., Rymell, L., Berglund, M., Hemberg, O., Janin, E., Thoresen, J., Mosesson S., Wallin, J., Hertz, H. M., "Status of the Liquid-xenon-jet laser-plasma Source for EUV Lithography", Proc. SPIE., vol. 4688, pp. 102- 109, (2002).
12 Wikipedia, "Pourbaix diagram", Dec.(2020).
13 Sharpe, R., "Analysis of the Relationship between Dissolved Molecular Hydrogen Gas, pH and ORP using the Nernst Equation", H2 Sciences Inc., ORP Page, pp. 1-22, (2017).
14 Buitrago, E., Fallica, R., Fan, D., Kulmana, T. S., Vokenhuber, M., Ekinci Y., "SnOx High-efficiency EUV Interference Lithography Gratings towards the Ultimate Resolution in Photolithography", Microelectronic Engineering, Vol. 155(4), pp.44-49, (2016).   DOI
15 Wikipedia, "Amphoterism", Dec.(2020).
16 Alfimov, A. V., Aryslanova, E. M., Chivilikhin, S. A., "Theoretical Study of the Amphoteric Oxide Nanoparticle Surface Charge during Multi-Particle Interactions in Aqueous Solution", J. of Physics: Conference Series, Article 643, pp. 1-6, (2015).
17 Zou, Y., Zhang, Y. H., He, P. X., "Synthesis and Characterization of Amphoteric Polyacrylamide by Dispersion Polymerization in Aqueous Salts Solution", J. Designed Monomers and Polymers, vol. 16(6), pp. 592- 600, (2013).   DOI
18 Ryoo, K., Jung, Y., Choi, I., Lee, J., Choi, B., "Evolutional Wet Cleaning in the Extreme Ultraviolet Era", ECS Journal of Solid State Science and Technology, 8(6) pp.1-4, (2019).
19 Hassanali, A., Prakash, M. K., Eshet, H., Parrinello, M., "On the Recombination of Hydronium and Hydroxide Ions in Water", Proc. Natl. Acad. Sci. USA, vol. 108(51), pp. 20410-20415, (2011).   DOI
20 Venkatesh, R. P., Kim, M., Park, G., "Contamination Removal from UV and EUV Photomasks", Developments in Surface Contamination and Cleaning : Methods for Surface Cleaning, William Andrew, 9, pp. 135-173, (2017)
21 Wikipedia, "Self-ionization of water", Dec.(2020).
22 Beckers, J., Ven, T., Horst, R., Astakhov, D., Banine V., "EUV-Induced Plasma : A Peculiar Phenomenon of a Modern Lithographic Technology", Appl. Sci., vol. 9, pp. 2827-2849, (2019).   DOI
23 Liu, Y., Ying, Y., Hua, X., Long, Y., "In-situ Discrimination of the Water Cluster Size Distribution in Aqueous Solution by TOF-SIMS", Science China Chemistry, vol. 61(2), pp. 159-163, (2018)   DOI
24 Jeong, J. Choi, H., Park, K., Kim, H., Choi, J., Park, I., Lee, S. S., "Polymer Micro-Atomizer for Water Electrospray in the Cone-Jet Mode", Polymer, vol. 194, pp. 1-5, (2020).
25 Thorne, J. A. and Slaughter, H., "Liquid Water Cluster Sizes", Thermochimica Acta, vol. 3(3), pp. 181-188, (1972).   DOI
26 Wikipedia, "Glycine", Dec.(2020).
27 Ito, H., "Chemically Amplified Resists: Past, Present, and Future", Proc. SPIE, Vol. 3678, pp.2-12, (1999).
28 Mikolajczyk, A., Gajewicz, A., Rasulev B., Schaeublin, N., Maurer-Gardner, E., Hussain, S., Leszczynski, J., Puzyn, T., "Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure-Property Relationship Approach", Chemistry of materials, American Chemical Society A, pp. 2400-2407, (2015).
29 Graham Jr., S., Steinhaus, C. A., Clift, W. M., Klebanoff, L. E., Bajt, S., "Atomic Hydrogen Cleaning of EUV Multilayer Optics", Proc. SPIE., vol. 5037, pp. 236-248, (2003).
30 Paul, J. B., Collier, C. P., SayKally, R. B., Sherer, J. J., O'Keefe, A., "A Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy", J. Phys. Chem. A, vol. 101, pp. 5211-5214, (1997).   DOI
31 Jailani, S., Franks, G. V., Healy, T. W., "Potential of Nanoparticle Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume Fraction", J. Am. Ceram. Soc., vol. 91(4), pp. 1141-1147, (2008).   DOI
32 Choi, J., Nho, Y. C., Hong, S. K., "Chemically Amplified Resist for Extreme UV Lithography", J. Korean Ind. Eng. Chem., vol. 17(2), pp. 158-162, (2006).