• Title/Summary/Keyword: ion chemistry

Search Result 2,523, Processing Time 0.031 seconds

Ion Exchange Property of the Synthesized Ion Exchange Resins

  • Lee, Dong-Hwan;Lee, Yong-Hee;Lee, Kook-Eui;Lee, Min-Gyu;Suh, Jung-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.155-159
    • /
    • 2004
  • We synthesized ion exchange resin that can remove $NO_3\;^-$ selectively rather than $SO_4\;^{2-}$. Ion exchange property of the synthesized ion exchange resin occurred like the following process, $NO_3\;^-$ > $SO_4\;^{2-}$, the efficiency of functional group to remove $NO_3\;^-$ occurred in the process of $NPr_3$ > $NBu_3$ > $NEt_3$ > $NMe_3$ > $NPe_3$ > $N(EtOH)_3$, and the efficiency of functional group to remove $SO_4\;^{2-}$ occurred in the process of $NMe_3$ > $NEt_3$ > $NPr_3$ > $NBu_3$ > $NPe_3$.

  • PDF

Remove of Sulphate Ion from Environmental Systems by using AlN Nanotubes

  • Baei, Mohammad T.;Hashemian, Saeedeh;Torabi, Parviz;Hosseini, Farzaneh
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1139-1143
    • /
    • 2014
  • The adsorption behavior of the sulphate ($SO{_4}^{2-}$) on the external surface of (5,0), (8,0), and (10,0) zigzag AlNNTs was studied by using density functional calculations. Adsorption energies in the nanotubes are about -8.59, -8.04, -8.60 eV with a charge transfer of 0.59, 0.48, 0.56|e| from the sulphate ion to the nanotubes, respectively. The adsorption energies indicated that sulphate ion can be absorbed strongly on the nanotubes. Therefore, these nanotubes can be used for adsorption of sulphate ion from the environmental systems. It was found that diameter of the AlNNTs has slight role in the adsorption of sulphate ion. The electronic properties of the nanotubes showed notable changes upon the adsorption process.

Ion Mobility Signatures of Glutamine-Containing Tryptic Peptides in the Gas Phase

  • Lee, Hyun Hee L.;Chae, Soo Yeon;Son, Myung Kook;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.137-145
    • /
    • 2021
  • Herein we report multiple ion mobility (IM) peaks in electrospray ionization IM mass spectrometry (ESI-IM-MS) produced by glutamine residue in peptide. The mobility features of 147 peptides were investigated using ESI-IM-MS combined with liquid chromatography. Of these peptides, 66 presented multiple IM peaks, and analysis of their sequence using collision induced dissociation (CID) revealed that glutamine (Gln), as well as proline (Pro), plays a critical role in generating multiple IM peaks. Mutant-based investigations using Gln-containing peptides indicate that the side chain of Gln promotes intermolecular interactions, inducing multiple structures of the peptide ions in the gas phase. Consequently, the present study demonstrates that the distinct ion mobility signatures identified herein can potentially be used to characterize glutamine-containing peptide ions.

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries (리튬 이온 배터리용 양극 및 음극 재료의 최근 동향)

  • Nguyen, Van Hiep;Kim, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.635-644
    • /
    • 2018
  • Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.

Salphen H2 as a Neutral Carrier for the Uranyl Ion-Selective PVC Membrane Sensor

  • Kim, Dong-Wan;Park, Kyeong-Won;Yang, Mi-Hyi;Kim, Jin-eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.899-902
    • /
    • 2006
  • The complexation of N,N'-4,5-(ethylenedioxy)benzenebis(salicylideneimine), (salphen$H_2$) with uranyl ion was studied in acetonitrile solution spectrophtometrically, and the formation constant of the resulting 1 : 1 complex was evaluated. The salphen$H_2$ ligand was used as an ionophore in plasticized poly(vinyl chloride) (PVC) matrix membrane sensor for uranyl ion. The prepared sensors exhibited a near Nernstian response, 28.0-30.9 mV/decade for uranyl ion over the concentration range $1.0\;{\times}\;10^{-2}$ to $1.0\;{\times}\;10^{-6}$M with a limit of detection of $3.2\;{\times}\;10^{-7}$ M. The proposed electrode could be used at a working pH range of 1.5 - 4.0.