Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.4.1139

Remove of Sulphate Ion from Environmental Systems by using AlN Nanotubes  

Baei, Mohammad T. (Department of Chemistry, Azadshahr Branch, Islamic Azad University)
Hashemian, Saeedeh (Department of Chemistry, Yazd Branch, Islamic Azad University)
Torabi, Parviz (Department of Chemistry, Mahshahr Branch, Islamic Azad University)
Hosseini, Farzaneh (Department of Chemistry, Mahshahr Branch, Islamic Azad University)
Publication Information
Abstract
The adsorption behavior of the sulphate ($SO{_4}^{2-}$) on the external surface of (5,0), (8,0), and (10,0) zigzag AlNNTs was studied by using density functional calculations. Adsorption energies in the nanotubes are about -8.59, -8.04, -8.60 eV with a charge transfer of 0.59, 0.48, 0.56|e| from the sulphate ion to the nanotubes, respectively. The adsorption energies indicated that sulphate ion can be absorbed strongly on the nanotubes. Therefore, these nanotubes can be used for adsorption of sulphate ion from the environmental systems. It was found that diameter of the AlNNTs has slight role in the adsorption of sulphate ion. The electronic properties of the nanotubes showed notable changes upon the adsorption process.
Keywords
Aluminum nitride nanotube; Adsorbent; Sulphate; DFT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Radojevic, M.; Bashkin, V. N. Cornwall, UK: MPG Books Ltd., Bodmin, 1999.
2 Pol, L. W. H.; Lens, P. N. L.; Stams, A. J. M.; Lettinga, G. Biodegradation 1998, 9, 213-224.   DOI   ScienceOn
3 Baird, C. Environmental Chemistry; Freeman, W. H. Company: New York, 1995.
4 Cao, W.; Dang, Z.; Zhou, X.-Q.; Yi, X.-Y.; Wu, P.-X.; Zhu, N.-W.; Lu, G.-N. Carbohydrate Polymers 2011, 85, 571-577.   DOI   ScienceOn
5 Silva, R.; Cadorin, L.; Rubio, J. Minerals Engineering 2010, 23, 1220-1226.   DOI   ScienceOn
6 Balasubramanian, C.; Bellucci, S.; Castrucci, P.; De Crescenzi, M.; Bhoraskar, S. V. Chem. Phys. Lett. 2004, 383, 188-191.   DOI   ScienceOn
7 Yeh, K.-Y.; Restaino, N. A.; Esopi, M. R.; Maranas, J. K.; Janik, M. J. Catal. Today 2012, doi:10.1016/j.cattod.2012.03.011   DOI   ScienceOn
8 Acelas, N. Y.; Mejia, S. M.; Mondragon, F.; Florez, E. Computational and Theoretical Chemistry 2013, 1005, 16-24.   DOI   ScienceOn
9 Tondare, V. N.; Balasubramanian, C.; Shende, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskar, S. V.; Bhadbhade, M. Appl. Phys. Lett. 2002, 80, 4813-4815.   DOI   ScienceOn
10 Ahmadi, A.; Hadipour, N. L.; Kamfiroozi, M.; Bagheri, Z. Sens. Actuators B Chem. 2012, 161, 1025-1029.   DOI   ScienceOn
11 Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363.   DOI   ScienceOn
12 Baei, M. T.; Moradi, A. V.; Moghimi, M.; Torabi, P. Comput. Theoret. Chem. 2011, 967, 179-184.   DOI   ScienceOn
13 Peyghan, A. A.; Baei, M. T.; Hashemian, S.; Torabi, P. J. Mol. Model 2013, 19, 859-870.   DOI   ScienceOn
14 Tournus, F.; Charlier, J. C. Phys. Rev. B 2005, 71, 165421.   DOI   ScienceOn
15 Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065-2091.   DOI   ScienceOn
16 Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Struct. Chem. 2009, 20, 1079-1085.   DOI
17 Li, S. S. Semiconductor Physical Electronics, 2nd ed.; Springer: USA, 2006.
18 Mulinari, D. R.; da Silva, M. L. C. P. Carbohydrate Polymers 2008, 74, 617-620.   DOI   ScienceOn
19 Stan, G.; Ciobanu, C.; Thayer, T.; Wang, G.; Creighton, J.; Purushotham, K.; Bendersky, L.; Cook, R. Nanotechnology 2009, 20, 35706-357014.   DOI   ScienceOn
20 Parr, R. G.; Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922-1924.   DOI   ScienceOn