Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.137

Ion Mobility Signatures of Glutamine-Containing Tryptic Peptides in the Gas Phase  

Lee, Hyun Hee L. (Research Division of Food Functionality, Korea Food Research Institute)
Chae, Soo Yeon (Department of Chemistry, Korea University)
Son, Myung Kook (Department of Chemistry, Korea University)
Kim, Hugh I. (Department of Chemistry, Korea University)
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 137-145 More about this Journal
Abstract
Herein we report multiple ion mobility (IM) peaks in electrospray ionization IM mass spectrometry (ESI-IM-MS) produced by glutamine residue in peptide. The mobility features of 147 peptides were investigated using ESI-IM-MS combined with liquid chromatography. Of these peptides, 66 presented multiple IM peaks, and analysis of their sequence using collision induced dissociation (CID) revealed that glutamine (Gln), as well as proline (Pro), plays a critical role in generating multiple IM peaks. Mutant-based investigations using Gln-containing peptides indicate that the side chain of Gln promotes intermolecular interactions, inducing multiple structures of the peptide ions in the gas phase. Consequently, the present study demonstrates that the distinct ion mobility signatures identified herein can potentially be used to characterize glutamine-containing peptide ions.
Keywords
ion mobility mass spectrometry; tryptic peptide; ion chemistry; glutamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435, DOI: 10.1021/ct700301q.   DOI
2 Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell Jr., A. D. J. Comput. Chem. 2010, 31, 671, DOI: 10.1002/jcc.21367.   DOI
3 Hudgins, R. R.; Ratner, M. A.; Jarrold, M. F. J. Am. Chem. Soc. 1998, 120, 12974, DOI: 10.1021/ja983021q.   DOI
4 Hall, Z.; Politis, A.; Bush, M. F.; Smith, L. J.; Robinson, C. V. J. Am. Chem. Soc. 2012, 134, 3429, DOI: 10.1021/ja2096859.   DOI
5 Tao, L.; McLean, J. R.; McLean, J. A.; Russell, D. H. J. Am. Soc. Mass. Spectrom. 2007, 18, 1232, DOI: 10.1016/j.jasms.2007.04.003.   DOI
6 Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. Bioinformatics 2013, 29, 845, DOI: 10.1093/bioinformatics/btt055.   DOI
7 Lee, H. H. L.; Kim, H. I. Isr. J. Chem. 2018, 58, 472, DOI: 10.1002/ijch.201700073.   DOI
8 May, J. C.; Goodwin, C. R.; Lareau, N. M.; Leaptrot, K. L.; Morris, C. B.; Kurulugama, R. T.; Mordehai, A.; Klein, C.; Barry, W.; Darland, E.; Overney, G.; Imatani, K.; Stafford, G. C.; Fjeldsted, J. C.; McLean, J. A. Anal. Chem. 2014, 86, 2107, DOI: 10.1021/ac4038448.   DOI
9 Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082, DOI: 10.1021/jp961623v.   DOI
10 Johnson, A. R.; Dilger, J. M.; Glover, M. S.; Clemmer, D. E.; Carlson, E. E. Chem. Commun. 2014, 50, 8849, DOI:10.1039/C4CC03257H.   DOI
11 Counterman, A. E.; Clemmer, D. E. Anal. Chem. 2002, 74, 1946, DOI: 10.1021/ac011083k.   DOI
12 Pierson, N. A.; Chen, L.; Russell, D. H.; Clemmer, D. E. J. Am. Chem. Soc. 2013, 135, 3186, DOI: 10.1021/ja3114505.   DOI
13 Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1999, 121, 3494, DOI: 10.1021/ja983996a.   DOI
14 Beckett, D.; El-Baba, T. J.; Clemmer, D. E.; Raghavachari, K. J. Chem. Theory Comput. 2018, 14, 5406, DOI: 10.1021/acs.jctc.8b00648.   DOI
15 Masson, A.; Kamrath, M. Z.; Perez, M. A. S.; Glover, M. S.; Rothlisberger, U.; Clemmer, D. E.; Rizzo, T. R. J. Am. Soc. Mass. Spectrom. 2015, 26, 1444, DOI: 10.1007/s13361-015-1172-4.   DOI
16 Valentine, S.; Kulchania, M.; Barnes, C.; Clemmer, D. Int. J. Mass Spectrom. 2001, 212, 97, DOI: 10.1016/S1387-3806(01)00511-5.   DOI
17 Warnke, S.; Baldauf, C.; Bowers, M. T.; Pagel, K.; von Helden, G. J. Am. Chem. Soc. 2014, 136, 10308, DOI:10.1021/ja502994b.   DOI
18 Bush, M. F.; Campuzano, I. D. G.; Robinson, C. V. Anal. Chem. 2012, 84, 7124, DOI: 10.1021/ac3014498.   DOI
19 Creese, A. J.; Cooper, H. J. Anal. Chem. 2012, 84, 2597, DOI: 10.1021/ac203321y.   DOI
20 Shek, P. Y. I.; Zhao, J.; Ke, Y.; Siu, K. W. M.; Hopkinson, A. C. J. Phys. Chem. A 2006, 110, 8282, DOI: 10.1021/jp055426k.   DOI
21 Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Anal. Chem. 2009, 81, 248, DOI: 10.1021/ac801916h.   DOI
22 Lietz, C. B.; Chen, Z.; Yun Son, C.; Pang, X.; Cui, Q.; Li, L. Analyst 2016, 141, 4863, DOI: 10.1039/C5AN00835B.   DOI
23 McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301, DOI: 10.1016/j.ijms.2004.10.003.   DOI
24 Zhong, Y.; Hyung, S. J.; Ruotolo, B. T. Expert Rev. Proteomics 2012, 9, 47, DOI: 10.1586/epr.11.75.   DOI
25 Lee, H. H. L.; Heo, C. E.; Seo, N.; Yun, S. G.; An, H. J.; Kim, H. I. J. Am. Chem. Soc. 2018, 140, 16528, DOI:10.1021/jacs.8b07864.   DOI
26 Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. P. Analyst 2004, 129, 984, DOI: 10.1039/B404531A.   DOI
27 Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill Jr., H. H., J. Mass Spectrom. 2008, 43, 1, DOI: 10.1002/jms.1383.   DOI
28 Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. Nat. Chem. 2014, 6, 281, DOI: 10.1038/nchem.1889.   DOI
29 Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. Anal. Chem. 2012, 84, 1026, DOI: 10.1021/ac202625t.   DOI