Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.123

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film  

Choi, Dongchul (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Cho, Youngjin (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Bae, Sang-Eun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Park, Tae-Hong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 123-130 More about this Journal
Abstract
We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.
Keywords
Electrochemically switched ion exchange; Decontamination; Separation; Radionuclide; Prussian Blue;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Lin, A. R. O. Raji, K. Nan, Z. Peng, Z. Yan, E. L. Samuel, D. Natelson, and J. M. Tour, Adv. Funct. Mater. 2014, 24(14), 2044-2048.   DOI
2 G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, ACS nano, 2015, 9(2), 1592-1599.   DOI
3 C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 2010, 48(8), 2127-2150.   DOI
4 E. Jin, X. Lu, L. Cui, D. Chao, and C. Wang, Electrochim. Acta, 2010, 55(24), 7230-7234.   DOI
5 H. Yang, L. Sun, J. Zhai, H. Li, Y. Zhao, and H. Yu, J. Mater. Chem. A, 2014, 2(2), 326-332.   DOI
6 W. Chen, J. Tang, and X.-H. Xia, J. Phys. Chem., 2009, 113, 21577.
7 S. M. Chen, C. Y. Liou, and R. Thangamuthu, Electroanal., 2007, 19(23), 2457-2464.   DOI
8 Y. Qing, J. Li, B. Kang, S. Chang, Y. Dai, Q. Long, and C. Yuan, J. Radioanal. Nucl. Chem., 2015, 304(2), 527-533.   DOI
9 A. C. Ferrari and J. Robertson, Phys. Rev. B, 2000, 61, 14095.   DOI
10 J. W. Lee, S.-I. In, and J.-D. Kim, J. Electrochem. Sci. Technol., 2013, 4(1), 19-26.   DOI
11 V. Avramenko, S. Bratskaya, V. Zheleznov, I. Sheveleva, O. Voitenko, and V. Sergienko, J. Hazard. Mater., 2011, 186(2-3), 1343-1350.   DOI
12 P. Coughtrey and M. Thorne, "Radionuclide distribution and transport in terrestrial and aquatic ecosystems" A Critical Review of Data. 1983, Vol. 1, A. A. Balkema, Rotterdam.
13 T. J. Yasunari, A. Stohl, R. S. Hayano, J. F. Burkhart, S. Eckhardt, and T. Yasunari, Proc. Natl. Acad. Sci., 2011, 108(49), 19530-19534.   DOI
14 G. Brumfiel, Nature, 2011, 472, 146-147.   DOI
15 T. G. Hinton, D. I. Kaplan, A. S. Knox, D. P. Coughlin, R. V. Nascimento, S. I. Watson, D. E. Fletcher, and B.-J. Koo, Environ. Sci. Technol., 2006, 40(14), 4500-4505.   DOI
16 P. Dhami, N. Dudwadkar, P. Achuthan, U. Jambunathan, and P. Dey, Sep. Sci. Technol., 2004, 39(13), 3143-3150.   DOI
17 A. Abbaspour and M. A. Mehrgardi, Anal. Chem., 2004, 76(19), 5690-5696.   DOI
18 L.-D. Feng, J.-M. Shen, X.-H. Li, and J.-J. Zhu, J. Phys. Chem. C, 2008, 112(20), 7617-7623.   DOI
19 F. Arduini, A. Cassisi, A. Amine, F. Ricci, D. Moscone, and G. Palleschi, J. Electroanal. Chem., 2009, 626(1-2), 66-74.   DOI
20 R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, RSC Adv., 2014, 4(71), 37600-37605.   DOI
21 S. M. Haight, D. T. Schwartz, and M. A. Lilga, J. Electrochem. Soc., 1999, 146(5), 1866-1872.   DOI
22 J. Reyes-Gomez, J. A. Medina, K. M. Jeerage, W. A. Steen, and D. T. Schwartz, J. Electrochem. Soc., 2004, 151(9), D87-D92.   DOI
23 R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Electrochim. Acta, 2013, 87, 119-125.   DOI
24 H.-W. Lee, M. Pasta, R. Y. Wang, R. Ruffo, and Y. Cui, Faraday Discuss., 2014, 176, 69-81.   DOI
25 W. A. Steen, S.-W. Han, Q. Yu, R. A. Gordon, J. O. Cross, E. A. Stern, G. T. Seidler, K. M. Jeerage, and D. T. Schwartz, Langmuir, 2002, 18(20), 7714-7721.   DOI
26 T. R. Cataldi and G. E. De Benedetto, J. Electroanal. Chem., 1998, 458(1-2), 149-154.   DOI
27 Y. Lin and X. Cui, Chem. Commun., 2005, 17, 2226-2228.   DOI
28 G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol., 2008, 3(5), 270.   DOI
29 M. Hu, S. Furukawa, R. Ohtani, H. Sukegawa, Y. Nemoto, J. Reboul, S. Kitagawa, and Y. Yamauchi, Angew. Chem. Int. Ed., 2012, 51, 984.   DOI
30 R. Chen, M. Asai, C. Fukushima, M. Ishizaki, M. Kurihara, M. Arisaka, T. Nankawa, M. Watanabe, T. Kawamoto, and H. Tanaka, J. Radioanal. Nucl. Chem, 2015, 303(2), 1491-1495.   DOI
31 Y. Haldorai, A. E. Vilian, M. Rethinasabapathy, Y. S. Huh, and Y.-K. Han, Sens. Actuators B Chem., 2017, 247, 61-69.   DOI
32 J. Yu and T. H. Kim, J. Electrochem. Sci. Technol., 2017, 8(4), 274-281.   DOI
33 C.-H. Lee, S.-E. Bae, C.-W. Lee, D.-H. Jung, C.-S. Kim, and D.-R. Shin, Int. J. Hydrogen Energy, 2001, 26(2), 175-178.   DOI
34 C.-H. Lee, C.-W. Lee, D.-I. Kim, and S.-E. Bae, Int. J. Hydrogen Energy, 2002, 27(4), 445-450.   DOI
35 Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS nano, 2010, 4(2), 1227-1233.   DOI
36 J. Yoo, Y. Kim, C.-W. Lee, H. Yoon, S. Yoo, and H. Jeong, J. Electrochem. Sci. Technol., 2017, 8(3), 250-256.   DOI
37 E. M. Jin, J. G. Lim, and S. M. Jeong, J. Ind. Eng. Chem., 2017, 54, 421-427.   DOI
38 X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano Res., 2008, 1(3), 203-212.   DOI
39 S. Park and R. S. Ruoff, Nat. Nanotechnol., 2009, 4(4), 217.   DOI
40 J. Kamenik, H. Dulaiova, F. Sebesta, and K. Stastna, J. Radioanal. Nucl. Chem., 2013, 296(2), 841-846.   DOI
41 H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace, and D. Li, Adv. Mater, 2008, 20(18), 3557-3561.   DOI
42 D. Chen, H. Feng, and J. Li, Chem. Rev., 2012, 112(11), 6027-6053.   DOI
43 A. K. Geim and K. S. Novoselov, Nat. mater., 2007, 6, 183.   DOI